Home
Class 12
MATHS
Evaluate : int tan^(-1)((x-5)/(1+5x))d...

Evaluate :
`int tan^(-1)((x-5)/(1+5x))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int \tan^{-1}\left(\frac{x-5}{1+5x}\right)dx \), we can use a trigonometric identity for the inverse tangent function. ### Step 1: Simplify the integrand Using the identity for the tangent of the difference of two angles, we have: \[ \tan^{-1}(a) - \tan^{-1}(b) = \tan^{-1\left(\frac{a-b}{1+ab}\right)} \] In our case, let \( a = x \) and \( b = 5 \). Then: \[ \tan^{-1}\left(\frac{x-5}{1+5x}\right) = \tan^{-1}(x) - \tan^{-1}(5) \] ### Step 2: Rewrite the integral Now we can rewrite the integral as: \[ I = \int \left(\tan^{-1}(x) - \tan^{-1}(5)\right)dx \] This can be split into two separate integrals: \[ I = \int \tan^{-1}(x)dx - \int \tan^{-1}(5)dx \] ### Step 3: Evaluate the second integral The second integral is straightforward since \(\tan^{-1}(5)\) is a constant: \[ \int \tan^{-1}(5)dx = x \tan^{-1}(5) \] ### Step 4: Evaluate the first integral Now we need to evaluate \( \int \tan^{-1}(x)dx \). We will use integration by parts. Let: - \( u = \tan^{-1}(x) \) so that \( du = \frac{1}{1+x^2}dx \) - \( dv = dx \) so that \( v = x \) Now applying integration by parts: \[ \int u \, dv = uv - \int v \, du \] This gives us: \[ \int \tan^{-1}(x)dx = x \tan^{-1}(x) - \int \frac{x}{1+x^2}dx \] ### Step 5: Evaluate the remaining integral The remaining integral can be evaluated as follows: \[ \int \frac{x}{1+x^2}dx \] Using the substitution \( w = 1+x^2 \), \( dw = 2x \, dx \) or \( dx = \frac{dw}{2x} \): \[ \int \frac{x}{1+x^2}dx = \frac{1}{2} \int \frac{1}{w}dw = \frac{1}{2} \ln|w| + C = \frac{1}{2} \ln(1+x^2) + C \] ### Step 6: Combine results Putting everything together, we have: \[ \int \tan^{-1}(x)dx = x \tan^{-1}(x) - \frac{1}{2} \ln(1+x^2) + C \] Now substituting back into our expression for \( I \): \[ I = \left(x \tan^{-1}(x) - \frac{1}{2} \ln(1+x^2)\right) - \left(x \tan^{-1}(5)\right) + C \] Thus, we can simplify this to: \[ I = x \tan^{-1}(x) - x \tan^{-1}(5) - \frac{1}{2} \ln(1+x^2) + C \] ### Final Answer \[ I = x \tan^{-1}(x) - x \tan^{-1}(5) - \frac{1}{2} \ln(1+x^2) + C \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos
  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise TWO MARK QUESTIONS|20 Videos
  • DIFFERENTIAL EQUATIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise 4 MARK QUESTIONS|31 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int tan^(-1)sqrt((1-x)/(1+x))dx

Evaluate: int tan^(-1)((2x)/(1-x^(2)))dx

Evaluate: int tan^(-1)sqrt(x)dx

Evaluate int (x+tan^(-1)x)dx

Evaluate: int tan^(-1)(sqrt(x))dx

Evaluate : int (tan^(-1)x)^(4)/(1+x^2) dx

Evaluate : int(tan^(-1)x)/((1+x)^(2))dx .

Evaluate: int(sin(tan^(-1)x))/(1+x^(2))dx

Evaluate: int(x tan^(-1)x^(2))/(1)dx

Evaluate: int(tan^(-1)x)/(1+x^(2))dx