Home
Class 12
MATHS
Evaluate : int e^([log(x+1)-logx])dx...

Evaluate :
`int e^([log(x+1)-logx])dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int e^{(\log(x+1) - \log x)} \, dx \), we can follow these steps: ### Step 1: Simplify the Exponent We start with the expression in the exponent: \[ e^{(\log(x+1) - \log x)} \] Using the property of logarithms that states \( \log a - \log b = \log\left(\frac{a}{b}\right) \), we can rewrite the exponent: \[ \log(x+1) - \log x = \log\left(\frac{x+1}{x}\right) \] Thus, we have: \[ e^{(\log(x+1) - \log x)} = e^{\log\left(\frac{x+1}{x}\right)} \] ### Step 2: Apply the Exponential and Logarithmic Identity Using the property \( e^{\log a} = a \), we can simplify further: \[ e^{\log\left(\frac{x+1}{x}\right)} = \frac{x+1}{x} \] ### Step 3: Rewrite the Integral Now, we can rewrite the integral: \[ \int e^{(\log(x+1) - \log x)} \, dx = \int \frac{x+1}{x} \, dx \] This can be separated into two simpler integrals: \[ \int \frac{x+1}{x} \, dx = \int \left(1 + \frac{1}{x}\right) \, dx \] ### Step 4: Integrate Each Term Now we can integrate each term separately: 1. The integral of \( 1 \) is \( x \). 2. The integral of \( \frac{1}{x} \) is \( \log|x| \). Combining these results, we get: \[ \int \left(1 + \frac{1}{x}\right) \, dx = x + \log|x| + C \] ### Final Answer Thus, the evaluated integral is: \[ \int e^{(\log(x+1) - \log x)} \, dx = x + \log|x| + C \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise FOUR MARK QUESTIONS|82 Videos
  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos
  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos
  • DIFFERENTIAL EQUATIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise 4 MARK QUESTIONS|31 Videos

Similar Questions

Explore conceptually related problems

Evaluate int e^x/log(e^x)dx

Evaluate: int x log(1+x)dx

Evaluate : int (e^("log x "))/(x) " dx "

Evaluate : int(e^(5logx)-e^(4logx))/(e^(3logx)-e^(2logx))dx .

Evaluate int 5^(log _(e)x)dx

Evaluate: int e^(x)(tan x-log cos x)dx

Evaluate : int {log(logx)+(1)/((logx)^(2))}dx

Evaluate: int e^(x)(log x+(1)/(x))dx

Evaluate: int e^(x log a)+e^(a log x)+e^(a log a)dx

int (log x)/(1+logx)^2 dx