Home
Class 12
MATHS
Evaluate int(sin x)/(sin 4x)dx...

Evaluate
`int(sin x)/(sin 4x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int \frac{\sin x}{\sin 4x} \, dx, \] we will follow a series of steps to simplify and solve the integral. ### Step 1: Rewrite \(\sin 4x\) Using the double angle formula, we know that \[ \sin 4x = 2 \sin 2x \cos 2x. \] Now, we can express \(\sin 2x\) as: \[ \sin 2x = 2 \sin x \cos x. \] Thus, \[ \sin 4x = 2 (2 \sin x \cos x) \cos 2x = 4 \sin x \cos x \cos 2x. \] ### Step 2: Substitute in the integral Now substituting \(\sin 4x\) back into the integral, we have: \[ I = \int \frac{\sin x}{4 \sin x \cos x \cos 2x} \, dx = \frac{1}{4} \int \frac{1}{\cos x \cos 2x} \, dx. \] ### Step 3: Simplify the integral Now we can rewrite the integral: \[ I = \frac{1}{4} \int \frac{\sec x}{\cos 2x} \, dx. \] ### Step 4: Use the identity for \(\cos 2x\) Recall that \[ \cos 2x = 1 - 2\sin^2 x. \] Thus, we can express the integral as: \[ I = \frac{1}{4} \int \frac{\sec x}{1 - 2\sin^2 x} \, dx. \] ### Step 5: Substitute \(t = \sin x\) Let \(t = \sin x\), then \(dt = \cos x \, dx\), or \(dx = \frac{dt}{\cos x}\). The integral becomes: \[ I = \frac{1}{4} \int \frac{1}{\cos^2 x (1 - 2t^2)} \, dt. \] ### Step 6: Rewrite the integral Using the identity \(\cos^2 x = 1 - t^2\), we can rewrite the integral: \[ I = \frac{1}{4} \int \frac{1}{(1 - t^2)(1 - 2t^2)} \, dt. \] ### Step 7: Partial fraction decomposition Now we can use partial fractions: \[ \frac{1}{(1 - t^2)(1 - 2t^2)} = \frac{A}{1 - t^2} + \frac{B}{1 - 2t^2}. \] Multiplying through by the denominator gives: \[ 1 = A(1 - 2t^2) + B(1 - t^2). \] Expanding and equating coefficients will give us values for \(A\) and \(B\). ### Step 8: Solve for \(A\) and \(B\) Setting \(t = 0\): \[ 1 = A + B \implies A + B = 1. \] Setting \(t = 1\): \[ 1 = A(1 - 2) + B(1 - 1) \implies -A = 1 \implies A = -1. \] Thus, \(B = 2\). Therefore, we have: \[ \frac{1}{(1 - t^2)(1 - 2t^2)} = \frac{-1}{1 - t^2} + \frac{2}{1 - 2t^2}. \] ### Step 9: Integrate each term Now we can integrate: \[ I = \frac{1}{4} \left( -\int \frac{1}{1 - t^2} \, dt + 2 \int \frac{1}{1 - 2t^2} \, dt \right). \] The integrals can be solved using the standard integral forms: \[ \int \frac{1}{1 - t^2} \, dt = \frac{1}{2} \log \left| \frac{1 + t}{1 - t} \right| + C, \] and \[ \int \frac{1}{1 - 2t^2} \, dt = \frac{1}{\sqrt{2}} \tanh^{-1}(\sqrt{2} t) + C. \] ### Step 10: Substitute back and simplify After integrating and substituting back \(t = \sin x\), we will arrive at the final answer: \[ I = \frac{1}{4} \left( -\frac{1}{2} \log \left| \frac{1 + \sin x}{1 - \sin x} \right| + 2 \cdot \frac{1}{\sqrt{2}} \tanh^{-1}(\sqrt{2} \sin x) \right) + C. \] ### Final Result Thus, the final result of the integral is: \[ I = \frac{1}{8} \log \left| \frac{1 + \sin x}{1 - \sin x} \right| + \frac{1}{2\sqrt{2}} \tanh^{-1}(\sqrt{2} \sin x) + C. \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos
  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise TWO MARK QUESTIONS|20 Videos
  • DIFFERENTIAL EQUATIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise 4 MARK QUESTIONS|31 Videos

Similar Questions

Explore conceptually related problems

int(sin2x)/(sin4x)dx

int (sin 2x)/(sin 4x) dx

Evaluate int (sin x)/(sin 3x) dx

Evaluate: int(sin x)/(1+sin x)dx

Evaluate: int(sin x)/(sin4x)dx

Evaluate: int(sin x)/(sin(x-a))dx

Evaluate: int(sin x)/(sin(x-a))dx

Evaluate: int(sin(x-a))/(sin x)dx

Evaluate: int(sin x)/(2+sin2x)dx

Evaluate: int(sin4x)/(sin x)dx