To solve the question \( \sqrt[3]{ab} = \sqrt[3]{a} \times \text{(..........)} \), we will use the properties of cube roots.
### Step-by-Step Solution:
1. **Understanding the Cube Root**: The cube root of a product can be expressed in terms of the cube roots of the individual factors. This is a property of cube roots.
2. **Applying the Property**: According to the property of cube roots, we can write:
\[
\sqrt[3]{ab} = \sqrt[3]{a} \times \sqrt[3]{b}
\]
3. **Filling in the Blank**: From the above equation, we can see that:
\[
\sqrt[3]{ab} = \sqrt[3]{a} \times \sqrt[3]{b}
\]
Therefore, the blank can be filled with \( \sqrt[3]{b} \).
4. **Final Answer**: Thus, we conclude that:
\[
\sqrt[3]{ab} = \sqrt[3]{a} \times \sqrt[3]{b}
\]
### Summary:
The complete equation is:
\[
\sqrt[3]{ab} = \sqrt[3]{a} \times \sqrt[3]{b}
\]
Topper's Solved these Questions
CUBES AND CUBE ROOTS
RS AGGARWAL|Exercise Test Paper-4|11 Videos
CONSTRUCTION OF QUADRILATERALS
RS AGGARWAL|Exercise Test Paper-17 (E)|1 Videos
DATA HANDLING
RS AGGARWAL|Exercise Exercise 21C|11 Videos
Similar Questions
Explore conceptually related problems
root3(a/b)=............
root3(-x)=...........
root3(5832)=?
root(3)(7)times root(6)(6)
root3(3(3)/8)=
root3(216 xx 64)=?
root3(125 xx 64)=?
root(3)(2) times root(3)(4)
root(3)(4)times root(3)(16)
root(3)(4) times root(6)(5)
RS AGGARWAL-CUBES AND CUBE ROOTS-Test Paper-4 (Fill in the blanks)