Home
Class 12
MATHS
Evaluate int(1)^(3)|x^(2)-2x|dx...

Evaluate
`int_(1)^(3)|x^(2)-2x|dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int_{1}^{3} |x^2 - 2x| \, dx \), we will follow these steps: ### Step 1: Identify the expression inside the absolute value The expression inside the absolute value is \( x^2 - 2x \). We can factor this expression: \[ x^2 - 2x = x(x - 2) \] This expression will change sign at the roots, which are \( x = 0 \) and \( x = 2 \). ### Step 2: Determine the intervals for the absolute value We need to analyze the sign of \( x^2 - 2x \) in the intervals defined by the roots: - For \( x < 0 \): \( x^2 - 2x > 0 \) - For \( 0 < x < 2 \): \( x^2 - 2x < 0 \) - For \( x > 2 \): \( x^2 - 2x > 0 \) Since we are integrating from \( 1 \) to \( 3 \), we only need to consider the intervals \( [1, 2] \) and \( [2, 3] \). ### Step 3: Rewrite the integral without the absolute value In the interval \( [1, 2] \), \( x^2 - 2x < 0 \), so \( |x^2 - 2x| = -(x^2 - 2x) = -x^2 + 2x \). In the interval \( [2, 3] \), \( x^2 - 2x > 0 \), so \( |x^2 - 2x| = x^2 - 2x \). Thus, we can split the integral as follows: \[ \int_{1}^{3} |x^2 - 2x| \, dx = \int_{1}^{2} (-(x^2 - 2x)) \, dx + \int_{2}^{3} (x^2 - 2x) \, dx \] ### Step 4: Evaluate the first integral Evaluate \( \int_{1}^{2} (-x^2 + 2x) \, dx \): \[ \int_{1}^{2} (-x^2 + 2x) \, dx = \left[-\frac{x^3}{3} + x^2\right]_{1}^{2} \] Calculating the limits: \[ = \left[-\frac{2^3}{3} + 2^2\right] - \left[-\frac{1^3}{3} + 1^2\right] \] \[ = \left[-\frac{8}{3} + 4\right] - \left[-\frac{1}{3} + 1\right] \] \[ = \left[-\frac{8}{3} + \frac{12}{3}\right] - \left[-\frac{1}{3} + \frac{3}{3}\right] \] \[ = \left[\frac{4}{3}\right] - \left[\frac{2}{3}\right] = \frac{4}{3} - \frac{2}{3} = \frac{2}{3} \] ### Step 5: Evaluate the second integral Evaluate \( \int_{2}^{3} (x^2 - 2x) \, dx \): \[ \int_{2}^{3} (x^2 - 2x) \, dx = \left[\frac{x^3}{3} - x^2\right]_{2}^{3} \] Calculating the limits: \[ = \left[\frac{3^3}{3} - 3^2\right] - \left[\frac{2^3}{3} - 2^2\right] \] \[ = \left[9 - 9\right] - \left[\frac{8}{3} - 4\right] \] \[ = 0 - \left[\frac{8}{3} - \frac{12}{3}\right] = 0 - \left[-\frac{4}{3}\right] = \frac{4}{3} \] ### Step 6: Combine the results Now, we combine the results of both integrals: \[ \int_{1}^{3} |x^2 - 2x| \, dx = \frac{2}{3} + \frac{4}{3} = \frac{6}{3} = 2 \] ### Final Answer Thus, the value of the integral is: \[ \int_{1}^{3} |x^2 - 2x| \, dx = 2 \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    FIITJEE|Exercise EXERCISE 4:|4 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise EXERCISE 8:|6 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise EXERCISE 2:|3 Videos
  • COMPLEX NUMBER

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • DETERMINANT

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

Evaluate int_(1)^(3)(x^(2)-2x)dx

Evaluate :int_(-1)^(2)|x^(3)-x|dx

Evaluate int_(-1)^(2)|x^(3)-x|dx

Evaluate int_(-1)^(2)|x^(3)-x|dx

Evaluate: int_(1)^(3)(2x^(2)+5x)dx as limit of a sum

Evaluate: int_(1)^(3)(x^(2)+x)dx

Evaluate int_(1)^(3)(3x^(2)+1)dx

Evaluate: int_(-2)^(1)|x^(3)-x|dx .

Evaluate: int_(1)^(2)(3x^(2)+2x+1)dx

Evaluate int_(0)^(1)(3x^(2)+2x+1)dx as limit of the sum.