Home
Class 12
MATHS
The value of the integral I=overset(oo)u...

The value of the integral `I=overset(oo)underset(1)int (x^(2)-2)/(x^(3)sqrt(x^(2)-1))dx`, is

Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    FIITJEE|Exercise EXERCISE 3:|5 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise EXERCISE 4:|4 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise EXERCISE 1:|4 Videos
  • COMPLEX NUMBER

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • DETERMINANT

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

The value of the integral I=int_(1)^(oo) (x^(2)-2)/(x^(3)sqrt(x^(2)-1))dx , is

The value of the integral int_(1)^(sqrt(2) +1) ((x^2 -1)/(x^2+1)) (1)/(sqrt(1 +x^4)) dx is

Evaluate the following definite integrals underset(0)overset(1)int(dx)/(sqrt(1-x^(2)))

Integrate int((x^(3)+3)dx)/(sqrt((x^(2)+1)))

The value of the definite integral int_(0)^(2) (sqrt(1+x ^(3))+""^(3) sqrt(x ^(2)+ 2x)) dx is :

The value of the integral int _(-a)^(a) (xe^(x^(2)))/(1+x^(2)) dx is

Evaluate the following definite integrals underset(0)overset(a)int(x)/(sqrt(a^(2)+x^(2)))dx

The value of the integral int_(-a)^(a) (xe^(x^(2)))/(1+x^(2))dx is