Home
Class 12
MATHS
Let A=[0 1 0 0]show that (a I+b A)^n=a^...

Let `A=[0 1 0 0]`show that `(a I+b A)^n=a^n I+n a^(n-1)b A`, where I is the identitymatrix of order 2 and `n in N`.

Text Solution

Verified by Experts

The correct Answer is:
N/a

Here `A=[{:(0,1),(1,0):}]`
`Let P(n) : (al+bA)^(n) -a^(n) I +na^(n-1) bA`
For` n=1`
`(p) =(al+bA)^(n) =a^(n)I+na^(n-1),bA=aI +bA `
which is true
` therefore p(n) ` is true for n=1.
Let p(n) be true for n=k.
`therefore p(k) :(aI+bA)^k) =a^(k)IKa^(k-1) bA .. .(1)`
for `n=k+1`
`p(k+1) : (aI+bA )^(k+1)=(aI+bA)^(k) .(aI+bA)`
`=(a^(k)I+ka^(k-1) bA),(aI+bA)` from equatiom (1)
`=a^(k+1)I+a^(k) IbA +Ka^(k)bAI +ka^(k-1)b^(2) A^(2)`
`=a^(k+1)I+a^(k)bA+Ka^(k)bA+0`
`{:' A^(2)=[{:(0,1),(0,0):}][{:(0,1),(0,0):}]=[{:(0,0),(0,0):}]=o}`
`=a^(K+1) I+(K+1)a^(k)bA`
`implies p(n) ` is also true for `n=K+1.`
therefore ,p(n) is also true for all natural numbers n, by the principle of mathematical induction.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN|Exercise Exercise 3.4|18 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

Let A=[[0,10,0]] show that (aI+bA)^(n)=a^(n)I+na^(n-1)bA where I is the identity matrix of order 2 and n in N

If I_(n) is the identity matrix of order n then (I_(n))^(-1)=

Knowledge Check

  • If (5 + 2 sqrt(6))^(n) = I + f , where I in N, n in N and 0 le f le 1, then I equals

    A
    `(1)/(f) -f`
    B
    `(1)/(1 +f) -f`
    C
    `(1)/(1 - f)- f`
    D
    `(1)/(1 - f) +f`
  • Similar Questions

    Explore conceptually related problems

    If A is idempotent matrix, then show that (A+I)^(n) = I+(2^(n)-1) A, AAn in N, where I is the identity matrix having the same order of A.

    Let A and B be matrices of order n. Provce that if (I - AB) is invertible, (I - BA) is also invertible and (I-BA)^(-1) = I + B (I- AB)^(-1)A, where I be the dientity matrix of order n.

    If A^(n) = 0 , then evaluate (i) I+A+A^(2)+A^(3)+…+A^(n-1) (ii) I-A + A^(2) - A^(3) +... + (-1) ^(n-1) for odd 'n' where I is the identity matrix having the same order of A.

    If A is a non zero square matrix of order n with det(I+A)!=0 and A^(3)=0, where I,O are unit and null matrices of order n xx n respectively then (I+A)^(-1)=

    If I_n is the identity matrix of order n then (I_n)^-1 (A) does not exist (B) =0 (C) =I_n (D) =nI_n

    Evaluate sum_(n=1)^(13)(i^(n)+i^(n+1)), where n in N

    Show that (1-i)^(n)(1-(1)/(i))^(n)=2^(n) for all n in N