Home
Class 12
MATHS
Find the adjoint of each of the matrices...

Find the adjoint of each of the matrices `[{:(1,2),(3,4):}]`

Text Solution

Verified by Experts

`Let A=[{:(1,2),(3,4):}]`
`A_(11)=(-1)^(1+1),4=4`
`A_(12)=(-1)^(1+2).3=-3,`
`A_(21)=(-1)^(2+1).2=-2,`
`A_(22)=(-1)^(2+2).1=1`
`therefore" adj A ="[{:(A_(11),A_(12)),(A_(21),A_(22)):}]`
`[{:(4,-3),(-2,1):}]=[{:(4,-2),(-3,1):}]`
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Exercise 4.6|16 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Exercise 4.4|5 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos

Similar Questions

Explore conceptually related problems

Find the adjoint of each of the matrices [{:(1,-1,2),(2,3,5),(-2,0,1):}]

Find the adjoint of the following matrices : [{:(2,3),(1,4):}]

Using elementary transformations, find the inverse of each of the matrices, [(2,1),(7,4)]

Using elementary transformations, find the inverse of each of the matrices, [(1,3),(2,7)]

Using elementary transformations, find the inverse of each of the matrices, [(1,-1),(2,3)]

Using elementary transformations, find the inverse of each of the matrices, [(3,1),(5,2)]

Find the adjoint of the following matrices : [{:(2,-1),(4,3):}]

Using elementary transformations, find the inverse of each of the matrices, [(2,-3),(-1,2)]

Using elementary transformations, find the inverse of each of the matrices, [(6,-3),(-2,-1)]

The adjoint of the matrix A= [{:( 1,2),( 3,-5) :}] is

NAGEEN PRAKASHAN-DETERMINANTS-Exercise 4.5
  1. Find the adjoint of each of the matrices [{:(1,2),(3,4):}]

    Text Solution

    |

  2. Find the adjoint of each of the matrices [{:(1,-1,2),(2,3,5),(-2,0,1...

    Text Solution

    |

  3. Varify A (adjA)=(adjA)A=|A| I [{:(2,3),(-4,-6):}]

    Text Solution

    |

  4. Varify A (adjA)=(adjA)A [{:(1,-1,2),(3,0,-2),(1,0,3):}]=

    Text Solution

    |

  5. Find the inverse the matrix (if it exists)given in[2-2 4 3]

    Text Solution

    |

  6. Find the inverse the matrix (if it exists)given in[-1 5-3 2]

    Text Solution

    |

  7. Find the inverse the matrix (if it exists)given in[1 2 3 0 2 4 0 0 5]

    Text Solution

    |

  8. Find the inverse the matrix (if it exists)given in [1 0 0 3 3 0 5 2-1]

    Text Solution

    |

  9. Find the inverse the matrix (if it exists) given in [[2, 1, 3],[ 4,-1,...

    Text Solution

    |

  10. Find the inverse the matrix (if it exists)given in[1-1 2 0 2-3 3-2 4]

    Text Solution

    |

  11. Find the inverse the matrix (if it exists)given in[0 0 0 0cosalphasina...

    Text Solution

    |

  12. If A=[3 2 7 5] and B=[6 7 8 9] , verify that (A B)^(-1)=B^(-1)A^(-1) .

    Text Solution

    |

  13. If A=[[3,1],[-1,2]], I=[[1,0],[0,1]] and O=[[0,0],[0,0]], show that A...

    Text Solution

    |

  14. Solve system of linear equations, using matrix method, x y" "+" "2...

    Text Solution

    |

  15. For the matrix A=[1 1 1 1 2-3 2 1 3]. Show that A^3-6A^2+5A+11 I=0. He...

    Text Solution

    |

  16. If A=[2-1 1-1 2-1 1-1 2] . Verify that A^3-6A^2+9A-4I=O and hence find...

    Text Solution

    |

  17. Let A be a non-singular square matrix of order 3 xx3. Then |adj A| is ...

    Text Solution

    |

  18. If A is an invertible matrix of order 2, then det (A^(-1))is equal to...

    Text Solution

    |