Home
Class 10
MATHS
Determine the nature of roots of the fol...

Determine the nature of roots of the following quadratic equations:
(i) `2x^(2)+5x-4=0` (ii) `9x^(2)-6x+1=0`
(iii) `3x^(2)+4x+2=0` (iv) `x^(2)+2sqrt2x+1=0`
(v) `x^(2)+x+1=0` (vi) `x^(2)+ax-4=0`
(vii) `3x^(2)+7x+(1)/(2)=0`
(viii) `3x^(2)-4sqrt3x+4=0`
(ix) `2sqrt3x^(2)-5x+sqrt3=0` (x) `(x-2a)(x-2b)=4ab`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the nature of the roots of the given quadratic equations, we will use the discriminant method. The discriminant \( D \) of a quadratic equation \( ax^2 + bx + c = 0 \) is given by the formula: \[ D = b^2 - 4ac \] The nature of the roots can be determined based on the value of the discriminant \( D \): - If \( D > 0 \): The roots are real and distinct. - If \( D = 0 \): The roots are real and equal. - If \( D < 0 \): The roots are complex (not real). Now, let's analyze each quadratic equation step by step: ### (i) \( 2x^2 + 5x - 4 = 0 \) 1. Identify \( a = 2 \), \( b = 5 \), \( c = -4 \). 2. Calculate the discriminant: \[ D = b^2 - 4ac = 5^2 - 4 \cdot 2 \cdot (-4) = 25 + 32 = 57 \] 3. Since \( D > 0 \), the roots are **real and distinct**. ### (ii) \( 9x^2 - 6x + 1 = 0 \) 1. Identify \( a = 9 \), \( b = -6 \), \( c = 1 \). 2. Calculate the discriminant: \[ D = b^2 - 4ac = (-6)^2 - 4 \cdot 9 \cdot 1 = 36 - 36 = 0 \] 3. Since \( D = 0 \), the roots are **real and equal**. ### (iii) \( 3x^2 + 4x + 2 = 0 \) 1. Identify \( a = 3 \), \( b = 4 \), \( c = 2 \). 2. Calculate the discriminant: \[ D = b^2 - 4ac = 4^2 - 4 \cdot 3 \cdot 2 = 16 - 24 = -8 \] 3. Since \( D < 0 \), the roots are **complex**. ### (iv) \( x^2 + 2\sqrt{2}x + 1 = 0 \) 1. Identify \( a = 1 \), \( b = 2\sqrt{2} \), \( c = 1 \). 2. Calculate the discriminant: \[ D = b^2 - 4ac = (2\sqrt{2})^2 - 4 \cdot 1 \cdot 1 = 8 - 4 = 4 \] 3. Since \( D > 0 \), the roots are **real and distinct**. ### (v) \( x^2 + x + 1 = 0 \) 1. Identify \( a = 1 \), \( b = 1 \), \( c = 1 \). 2. Calculate the discriminant: \[ D = b^2 - 4ac = 1^2 - 4 \cdot 1 \cdot 1 = 1 - 4 = -3 \] 3. Since \( D < 0 \), the roots are **complex**. ### (vi) \( x^2 + ax - 4 = 0 \) 1. Identify \( a = 1 \), \( b = a \), \( c = -4 \). 2. Calculate the discriminant: \[ D = b^2 - 4ac = a^2 - 4 \cdot 1 \cdot (-4) = a^2 + 16 \] 3. Since \( D \) is always greater than 0 for any real \( a \), the roots are **real and distinct**. ### (vii) \( 3x^2 + 7x + \frac{1}{2} = 0 \) 1. Identify \( a = 3 \), \( b = 7 \), \( c = \frac{1}{2} \). 2. Calculate the discriminant: \[ D = b^2 - 4ac = 7^2 - 4 \cdot 3 \cdot \frac{1}{2} = 49 - 6 = 43 \] 3. Since \( D > 0 \), the roots are **real and distinct**. ### (viii) \( 3x^2 - 4\sqrt{3}x + 4 = 0 \) 1. Identify \( a = 3 \), \( b = -4\sqrt{3} \), \( c = 4 \). 2. Calculate the discriminant: \[ D = b^2 - 4ac = (-4\sqrt{3})^2 - 4 \cdot 3 \cdot 4 = 48 - 48 = 0 \] 3. Since \( D = 0 \), the roots are **real and equal**. ### (ix) \( 2\sqrt{3}x^2 - 5x + \sqrt{3} = 0 \) 1. Identify \( a = 2\sqrt{3} \), \( b = -5 \), \( c = \sqrt{3} \). 2. Calculate the discriminant: \[ D = b^2 - 4ac = (-5)^2 - 4 \cdot 2\sqrt{3} \cdot \sqrt{3} = 25 - 24 = 1 \] 3. Since \( D > 0 \), the roots are **real and distinct**. ### (x) \( (x - 2a)(x - 2b) = 4ab \) 1. Expand the equation: \[ x^2 - 2ax - 2bx + 4ab = 0 \implies x^2 - 2(a + b)x + 4ab = 0 \] 2. Identify \( a = 1 \), \( b = -2(a + b) \), \( c = 4ab \). 3. Calculate the discriminant: \[ D = b^2 - 4ac = (-2(a + b))^2 - 4 \cdot 1 \cdot 4ab = 4(a + b)^2 - 16ab \] 4. Since \( D \) depends on \( a \) and \( b \), we cannot determine the nature without specific values. ### Summary of Roots: 1. \( 2x^2 + 5x - 4 = 0 \): Real and Distinct 2. \( 9x^2 - 6x + 1 = 0 \): Real and Equal 3. \( 3x^2 + 4x + 2 = 0 \): Complex 4. \( x^2 + 2\sqrt{2}x + 1 = 0 \): Real and Distinct 5. \( x^2 + x + 1 = 0 \): Complex 6. \( x^2 + ax - 4 = 0 \): Real and Distinct 7. \( 3x^2 + 7x + \frac{1}{2} = 0 \): Real and Distinct 8. \( 3x^2 - 4\sqrt{3}x + 4 = 0 \): Real and Equal 9. \( 2\sqrt{3}x^2 - 5x + \sqrt{3} = 0 \): Real and Distinct 10. \( (x - 2a)(x - 2b) = 4ab \): Depends on values of \( a \) and \( b \).
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • QUADRATIC EQUATIONS

    NAGEEN PRAKASHAN|Exercise Exercise 4d|56 Videos
  • QUADRATIC EQUATIONS

    NAGEEN PRAKASHAN|Exercise Revision Exercise Very Short Answer Questions|15 Videos
  • QUADRATIC EQUATIONS

    NAGEEN PRAKASHAN|Exercise Exercise 4b|16 Videos
  • PROBABILITY

    NAGEEN PRAKASHAN|Exercise Revision Exercise Very Short Answer/short Answer Questions|16 Videos
  • REAL NUMBERS

    NAGEEN PRAKASHAN|Exercise Revision Exercise Long Answer Questions|5 Videos

Similar Questions

Explore conceptually related problems

Determine the nature of the roots of the following quadratic equations: 2x^(2)-3x+5=0 (ii) 2x^(2)-6x+3=0 (iii) (3)/(5)x^(2)-(2)/(3)x+1=0

Determine the nature of roots of given quadratic equation ( i x^(2)+x+1=0 (ii) 4x^(2)-4x+1=0

Determine the nature of the roots of the following quadratic equations: 3x^(2)-4sqrt(3)x+4=0 (ii) 3x^(2)-2sqrt(6)x+2=0 (iii) (x-2a)(x-2b)=4ab

Write the discriminant of the following quadratic equations: x^(2)-4x+2=0 (ii) 3x^(2)+2x-1=0 (iii) x^(2)-4x+a=0

Determine the nature of the roots of the following quadratic equations: 2x^(2)+x-1=0x^(2)-4x+4=0x^(2)+x+1=04x^(2)-4x+1=02x^(2)+5x+5=0

Write the discriminant of the following quadratic equations: 2x^(2)-5x+3=0 (ii) x^(2)+2x+4=0

Solve the following quadratic equation : 4sqrt3x^(2)+5x-2sqrt3=0

(4) sqrt(3)x^(2)+2x-sqrt(3)=0

Find the nature of the roots of the following quadratic equations: (i) 2x^(2)-8x+5=0" "(ii)" "3x^(2)-2sqrt(6)x+2=0 (iii) 5x^(2)-4x+1=0" "(iv)" "5x(x-2)+6=0 (v) 12x^(2)-4sqrt(15)x+5=0" "(vi)" "x^(2)-x+2=0

Find the nature of roots of the following quadratic equations. If the real roots exist, (i) 2x^(2)-3x+5=0 (ii) 3x^(2)-4sqrt3x+4=0 (iii) 2x^(2)-6x+3=0