Home
Class 10
MATHS
Without using trigonometric tables , eva...

Without using trigonometric tables , evaluate :
(i) `(sin11^(@))/(cos79^(@))`
(ii)`(sec15^(@))/("cosec"75^(@))`
(iii) `(tan54^(@))/(cot36^(@))`
(iv)` (cos68^(@))/(sin22^(@))`
(v) `("cosec"24^(@))/(sec66^(@))`
(vi) `(cot18^(@))/(tan72^(@))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the given expressions without using trigonometric tables, we can use trigonometric identities and co-function relationships. Let's solve each part step by step. ### (i) Evaluate \( \frac{\sin 11^\circ}{\cos 79^\circ} \) 1. **Use the co-function identity**: We know that \( \sin \theta = \cos(90^\circ - \theta) \). - Here, \( \sin 11^\circ = \cos(90^\circ - 11^\circ) = \cos 79^\circ \). 2. **Substituting the identity**: \[ \frac{\sin 11^\circ}{\cos 79^\circ} = \frac{\cos 79^\circ}{\cos 79^\circ} = 1 \] ### (ii) Evaluate \( \frac{\sec 15^\circ}{\csc 75^\circ} \) 1. **Use the identities**: We know that \( \sec \theta = \frac{1}{\cos \theta} \) and \( \csc \theta = \frac{1}{\sin \theta} \). - Thus, \( \frac{\sec 15^\circ}{\csc 75^\circ} = \frac{1/\cos 15^\circ}{1/\sin 75^\circ} = \frac{\sin 75^\circ}{\cos 15^\circ} \). 2. **Use the co-function identity**: \( \sin 75^\circ = \cos(90^\circ - 75^\circ) = \cos 15^\circ \). 3. **Substituting the identity**: \[ \frac{\sin 75^\circ}{\cos 15^\circ} = \frac{\cos 15^\circ}{\cos 15^\circ} = 1 \] ### (iii) Evaluate \( \frac{\tan 54^\circ}{\cot 36^\circ} \) 1. **Use the identity**: We know that \( \cot \theta = \frac{1}{\tan \theta} \). - Thus, \( \frac{\tan 54^\circ}{\cot 36^\circ} = \tan 54^\circ \cdot \tan 36^\circ \). 2. **Use the co-function identity**: \( \tan 54^\circ = \cot(90^\circ - 54^\circ) = \cot 36^\circ \). 3. **Substituting the identity**: \[ \frac{\tan 54^\circ}{\cot 36^\circ} = \frac{\cot 36^\circ}{\cot 36^\circ} = 1 \] ### (iv) Evaluate \( \frac{\cos 68^\circ}{\sin 22^\circ} \) 1. **Use the co-function identity**: \( \sin 22^\circ = \cos(90^\circ - 22^\circ) = \cos 68^\circ \). 2. **Substituting the identity**: \[ \frac{\cos 68^\circ}{\sin 22^\circ} = \frac{\cos 68^\circ}{\cos 68^\circ} = 1 \] ### (v) Evaluate \( \frac{\csc 24^\circ}{\sec 66^\circ} \) 1. **Use the identities**: We know that \( \csc \theta = \frac{1}{\sin \theta} \) and \( \sec \theta = \frac{1}{\cos \theta} \). - Thus, \( \frac{\csc 24^\circ}{\sec 66^\circ} = \frac{1/\sin 24^\circ}{1/\cos 66^\circ} = \frac{\cos 66^\circ}{\sin 24^\circ} \). 2. **Use the co-function identity**: \( \cos 66^\circ = \sin(90^\circ - 66^\circ) = \sin 24^\circ \). 3. **Substituting the identity**: \[ \frac{\cos 66^\circ}{\sin 24^\circ} = \frac{\sin 24^\circ}{\sin 24^\circ} = 1 \] ### (vi) Evaluate \( \frac{\cot 18^\circ}{\tan 72^\circ} \) 1. **Use the identity**: We know that \( \tan \theta = \frac{1}{\cot \theta} \). - Thus, \( \frac{\cot 18^\circ}{\tan 72^\circ} = \cot 18^\circ \cdot \cot 72^\circ \). 2. **Use the co-function identity**: \( \tan 72^\circ = \cot(90^\circ - 72^\circ) = \cot 18^\circ \). 3. **Substituting the identity**: \[ \frac{\cot 18^\circ}{\tan 72^\circ} = \frac{\cot 18^\circ}{\cot 18^\circ} = 1 \] ### Summary of Results: - (i) \( 1 \) - (ii) \( 1 \) - (iii) \( 1 \) - (iv) \( 1 \) - (v) \( 1 \) - (vi) \( 1 \)
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN|Exercise Revision Exercise Very Short Answer Questions|38 Videos
  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN|Exercise Revision Exercise Short Answer Questions|33 Videos
  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN|Exercise Exercise 8 D|6 Videos
  • CONSTRUCTIONS

    NAGEEN PRAKASHAN|Exercise PROBLEMS FROM NCERT/ EXEMPLAR|10 Videos
  • LINEAR EQUATIONS IN TWO VARIABLES

    NAGEEN PRAKASHAN|Exercise Revision Exercise Long Answer Questions|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following : (i) (sin58^(@))/(cos32^(@)) (ii) (sec42^(@))/("cosec"48^(@)) (iii) (tan37^(@))/(cot53^(@))

Without using trigonometric tables, evaluate : (i) (sin16^@)/(cos 74^@) (ii) (sec 11^@)/(cosec 79^@) (iii) (tan 27^@)/(cot 63^@) (iv) (cos 35^@)/(sin 55^@) (v) (cosec 42^@)/(sec 48^@) (vi) (cot 38^@)/(tan 52^@)

Without using trigonometric tables , evaluate : (i) (sin40^(@))/(cos50^(@))+(3tan50^(@))/(cot40^(@)) (ii) (sec37^(@))/("cosec "53^(@))-(tan20^(@))/(cot70^(@)) (iii) (cos74^(@))/(sin16^(@))+(sin12^(@))/(cos78^(@))-sin18^(@)sec72^(@) (iv) sin35^(@)sec55^(@)+(4sec32^(@))/("cosec "58^(@))

Without using trigonometric tables , evaluate : ((tan20^(@))/(cosec70^(@)))^(2)+((cot20^(@))/(sec70^(@)))^2+2tan 15^(@)tan37^(@)tan53^(@)tan60^(@)tan75^(@)

Evaluate the following: (i) (cos37^(@))/(sin53^(@))(ii)(sin41^(@))/(cos49^(@))(iii)(tan54^(@))/(cot36^(@))

Without using trigonometric tables, evaluate : (i) (cos 53^@)/(sin 37^@) (ii) (tan68^@)/(cot 22^@) (iii) (sec49^@)/(cosec 41^@) (iv) (sin 30^@17')/(cos 59^@43')

Without using the trigonometric tables, evaluate the following : (11)/(7) (sin 70^(@))/(cos 20^(@)) - (4)/(7) (cos 53^(@) "cosec" 37^(@))/(tan 15^(@) tan 35^(@) tan 55^(@) tan 75^(@))

Without using trigonometric tables, evaluate : (i) cos 48^@-sin42^@ (ii) cosec31^@-sec59^@ (iii) cot 34^@-tan56^@ (iv) cos^2 13^@-sin^2 77^@

Without using trigonometric tables , prove that : (i) sin50^(@)-cos40^(@)=0 (ii) tan36^(@)-cot54^(@)=0 (iii) sec25^(@)-"cosec "65^(@)=0 (iv) sin^(2)32^(@)+sin^(2)58^(@)=1 (v) "cosec"^(2)39^(@)tan^(2)51^(@)=1 (vi) sec^(2)10^(@)-cot^(2)80^(@)=1

Evaluate the following: (cos37^(0))/(sin53^(0))( ii) (tan54^(@))/(cot36^(@)) (iv) (cos ec34^(0))/(sec56^(@))