Home
Class 12
CHEMISTRY
If lambda=c(2)[(n^(2))/(n^(2)-2^(2))] fo...

If `lambda=c_(2)[(n^(2))/(n^(2)-2^(2))]` for Balmer series, what is the value of `c_(2)`?

A

`(4)/(R_(H))`

B

`(2)/(R_(H))`

C

`2R_(H)`

D

`4R_(H)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the question, we need to find the value of \( c_2 \) in the given equation for the Balmer series: \[ \lambda = c_2 \left( \frac{n^2}{n^2 - 2^2} \right) \] ### Step-by-Step Solution: 1. **Understand the Balmer Series**: The Balmer series corresponds to transitions in a hydrogen atom where the electron falls to the second energy level (n=2) from higher energy levels (n=3, 4, 5,...). 2. **Use the Formula for Wavelength**: The formula for the wavelength of the emitted light in the Balmer series can be derived from the Rydberg formula: \[ \frac{1}{\lambda} = R_H \left( \frac{1}{n_1^2} - \frac{1}{n_2^2} \right) \] where \( R_H \) is the Rydberg constant, \( n_1 = 2 \) (for Balmer series), and \( n_2 = n \) (where \( n \) is greater than 2). 3. **Substituting Values**: Substitute \( n_1 = 2 \) into the formula: \[ \frac{1}{\lambda} = R_H \left( \frac{1}{2^2} - \frac{1}{n^2} \right) = R_H \left( \frac{1}{4} - \frac{1}{n^2} \right) \] 4. **Finding a Common Denominator**: The expression can be rewritten as: \[ \frac{1}{\lambda} = R_H \left( \frac{n^2 - 4}{4n^2} \right) \] Therefore, \[ \lambda = \frac{4n^2}{R_H(n^2 - 4)} \] 5. **Comparing with Given Equation**: Now, we can compare this with the given equation: \[ \lambda = c_2 \left( \frac{n^2}{n^2 - 4} \right) \] By comparing both expressions for \( \lambda \): \[ c_2 \left( \frac{n^2}{n^2 - 4} \right) = \frac{4n^2}{R_H(n^2 - 4)} \] 6. **Solving for \( c_2 \)**: From the comparison, we can isolate \( c_2 \): \[ c_2 = \frac{4}{R_H} \] ### Final Answer: Thus, the value of \( c_2 \) is: \[ c_2 = \frac{4}{R_H} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • NTA JEE MOCK TEST 91

    NTA MOCK TESTS|Exercise CHEMISTRY|25 Videos
  • NTA JEE MOCK TEST 93

    NTA MOCK TESTS|Exercise CHEMISTRY|25 Videos

Similar Questions

Explore conceptually related problems

If lamda=c_(2)[(n^(2))/(n^(2)-Z^(2))] for Balmer series what is the value of C_(2) ?

If .^((n^(2)-n))C_(2)=.^((n^(2)-n))C_(4) then find the value of n.

Knowledge Check

  • For balmer series wavelength of first line is lambda_(1) and for brackett series wavelength of first line is lambda_(2) then (lambda_(1))/(lambda_(2)) is

    A
    0.81
    B
    0.162
    C
    0.198
    D
    0.238
  • For balmer series wavelength of first line is lambda_(1) and for brackett series wavelength of first line is lambda_(2) then (lambda_(1))/(lambda_(2)) is

    A
    0.81
    B
    0.162
    C
    0.198
    D
    0.238
  • If n = ""^(k)C_2 , the value of ""^(n)C_2 is:

    A
    a. `2 (""^(K+2)C_4)`
    B
    b. `(n-2)!`
    C
    c. `(k-2)!`
    D
    d. `3 (""^(K+3) C_4)`
  • Similar Questions

    Explore conceptually related problems

    If 2^(n+2)-2^(n+2)-2^(n+1)+2^(n)=cxx2^(n) find the value of c.

    If .^(n+1)C_(3)=2(.^(n)C_(2)) , find the value of n.

    int_(2)^(4) (3x^(2)+1)/((x^(2)-1)^(3))dx = (lambda)/(n^(2)) where lambda, n in N and gcd(lambda,n) = 1 , then find the value of lambda + n

    If .^(n+2)C_(8) : ^(n-2)P_(4)=57:16 , then the value of (n)/(2) is

    if .^(2n)C_(2):^(n)C_(2)=9:2 and .^(n)C_(r)=10 , then r is equal to