Home
Class 12
MATHS
Let alpha,beta be the roots of the equat...

Let `alpha,beta` be the roots of the equation `ax^2+bx+c=0 "Let" S_n=alpha^n+beta^n "for" n ge 1` evaluate the determinant
`|{:(3,1+s_1,1+s_2),(1+s_1,1+s_2,1+s_3),(1+s_2,1+s_3,1+s_3):}|`

Text Solution

Verified by Experts

The correct Answer is:
`((a+b+c)^2)/(a^4)( b^2-4ac)`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DETERMINANT

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-I|53 Videos
  • DETERMINANT

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) Level -II|19 Videos
  • DETERMINANT

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE) (LEVEL-I) Fill in the blanks|4 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • ELLIPSE

    FIITJEE|Exercise NUMERICAL BASED|4 Videos

Similar Questions

Explore conceptually related problems

Let alpha,beta , be the roots of the equation x^2+x-1=0 . Let S_n=alpha^n+beta^n "for" n ge 1 . Evaluate the determinant |{:(3,1+s_1,1+s_2),(1+s_1,1+s_2,1+s_3),(1+s_2,1+s_3,1+s_4):}|

Let alpha , beta be the roots of the equation ax^2 +bx+c=0 . Let S_(n) = alpha^(n)+beta^(n) for ngt1 .Let Delta=|(3,1+s_1,1+s_2),(1+s_1,1+s_2,1+s_3),(1+s_2,1+s_3,1+s_4)| Then Delta =……

Knowledge Check

  • If alpha and beta are the roots of the equation ax^2+bx+c=0 and S_n=alpha^n+beta^n , then a S_(n+1)+b S_n+c S_(n-1) is equal to

    A
    0
    B
    abc
    C
    a+b+c
    D
    None of these
  • Similar Questions

    Explore conceptually related problems

    Let alpha and beta be the roots of the equation 5x^2+6x-2=0 . If S_n=alpha^n+beta^n, n=1,2,3.... then

    Let alpha and beta be the roots of the equation 5x^2 + 6x-2 =0 if S_(n ) = alpha ^(n) + beta^(n) , n= 1,2,3 ..,, then :

    If alpha,beta are the roots of the equation ax^(2)+bx+c=0 and S_(n)=alpha^(n)+beta^(n) then evaluate det[[3,1+s_(1),=alpha^(n)+beta^(n)3,1+s_(1),+s_(2)1+s_(1),1+s_(2),1+s_(3)1+s_(2),1+s_(3),1+s_(4)]]

    If alpha,beta are the roots of the equation ax^(2)+bx+c=0 and S_(n)=alpha^(n)+beta^(n), then a S_(n+1)+cS_(n)-1)=

    If alpha, beta are the roots of the equation ax^(2) +bx+c=0 and S_(n) =alpha^(n) +beta^(n)" then "a S_(n+1) +b S_(n)+ c S_(n-1)=

    alpha and beta are the roots of x^2-x-1=0 and S_n=2023 alpha^n 2024 beta^n then

    If alpha,beta are the roots of the equation ax^2+bx+c=0 and S_n=alpha^n+beta^n , show that aS_(n+1)+bS_n+cS_(n-1)=0 and hence find S_5