Home
Class 12
MATHS
The value of Delta by using the propert...

The value of `Delta` by using the properties of determinant where `Delta = |{:(265,240,219),(240,225,198),(219,198,181):}|` is

Text Solution

Verified by Experts

The correct Answer is:
0
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DETERMINANT

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE) Level -II|12 Videos
  • DETERMINANT

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-I|53 Videos
  • DETERMINANT

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE) LEVEL-I|8 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • ELLIPSE

    FIITJEE|Exercise NUMERICAL BASED|4 Videos

Similar Questions

Explore conceptually related problems

Evaluate |{:(265, 240, 219),(240, 225, 198), (219, 198, 181):}|

|[265,240,219],[240,225,198],[219,198,181]|=0

Knowledge Check

  • If C = 2 cos theta , then the value of the determinant Delta = |(C,1,0),(1,C,1),(6,1,c)| , is

    A
    `(sin 4 theta)/(sin theta)`
    B
    `(2 sin^(2) 2 theta)/(sin theta)`
    C
    `4 cos^(2) theta (2 cos theta -1)`
    D
    none of these
  • The value of the determinant Delta=|(1!,2!,3!),(2!,3!,4!),(3!,4!,5!)| is

    A
    `2!`
    B
    `3!`
    C
    `4!`
    D
    `5!`
  • If C=2costheta , then the value of the determinant Delta=|(C,1,0),(1,C,1),(6,1,C)| is

    A
    `(2sin^(2)2theta)/(sintheta)`
    B
    `8cos^(3)theta-4costheta+6`
    C
    `(2sin2theta)/(sintheta)`
    D
    `8cos^(3)theta+4costheta+6`
  • Similar Questions

    Explore conceptually related problems

    Prove that |[265,240,219],[240,225,198],[219,198,181]|=0

    Prove that |[265,240,219] , [240,225,198] , [219,198,181]|=0

    Evaluate Delta using the properties of Determinant Delta=|{:(loga,p,1),(logb,q,1),(logc,r,1):}| "where" a,b,c (gt 0) "are the " p^(th),q^(th)and r^(th) terms of a G.P

    Find the values of the following determinants : (i) |{:(12,3,4),(16,5,0),(21,-1,2):}| (ii) |{:(256,240,219),(240,225,198),(219,198,181):}| (iii) |{:(17,19,24),(6,8,13),(-1,1,6):}| (iv) |{:(67,19,21),(39,13,14),(81,24,26):}| (v) |{:(1,omega,omega^(2)),(omega,omega^(2),1),(omega^(2),omega,1):}|" where "omega "is a cube root of unity". (iv) |{:(1,x,y),(0,(2pi)/5,sin(pi)/10),(0,sin((2pi)/5),cos(pi)/10):}|

    Using properties of determinants,evaluate det[[18,40,8940,89,19889,198,440]]