Home
Class 12
MATHS
Solve ydx-xdy=x^(2)ydx....

Solve `ydx-xdy=x^(2)ydx`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differential equation \( y \, dx - x \, dy = x^2 \, y \, dx \), we will follow these steps: ### Step 1: Rearranging the Equation We start with the given equation: \[ y \, dx - x \, dy = x^2 \, y \, dx \] We can rearrange this to isolate \( dy \): \[ y \, dx - x^2 \, y \, dx = x \, dy \] Factoring out \( dx \) on the left side: \[ (y - x^2 y) \, dx = x \, dy \] ### Step 2: Dividing Both Sides Next, we divide both sides by \( y \) and \( x \): \[ \frac{dy}{y} = \frac{(1 - x^2)}{x} \, dx \] ### Step 3: Integrating Both Sides Now we integrate both sides: \[ \int \frac{dy}{y} = \int \frac{(1 - x^2)}{x} \, dx \] The left side integrates to: \[ \log |y| + C_1 \] For the right side, we can split the integral: \[ \int \frac{1}{x} \, dx - \int x \, dx = \log |x| - \frac{x^2}{2} + C_2 \] So we have: \[ \log |y| = \log |x| - \frac{x^2}{2} + C \] where \( C = C_2 - C_1 \). ### Step 4: Exponentiating Both Sides To eliminate the logarithm, we exponentiate both sides: \[ |y| = e^{\log |x| - \frac{x^2}{2} + C} = |x| e^{C} e^{-\frac{x^2}{2}} \] Let \( k = e^{C} \), we can write: \[ y = k |x| e^{-\frac{x^2}{2}} \] ### Step 5: General Solution Thus, the general solution of the differential equation is: \[ y = k x e^{-\frac{x^2}{2}} \quad \text{(for } x \neq 0\text{)} \]

To solve the differential equation \( y \, dx - x \, dy = x^2 \, y \, dx \), we will follow these steps: ### Step 1: Rearranging the Equation We start with the given equation: \[ y \, dx - x \, dy = x^2 \, y \, dx \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DETERMINANTS

    NCERT EXEMPLAR|Exercise Determinants|58 Videos
  • INTEGRALS

    NCERT EXEMPLAR|Exercise Integrals|62 Videos

Similar Questions

Explore conceptually related problems

Solve: ydx-xdy=xydy

Solve: ydx-xdy+xy^2dx=0

Solve: ydx-xdy+(1+x^2)dx+x^2sinydy=0

Solve: ydx-xdy+logxdx=0

Solve ydx-xdy+log xdx=0

xdy-ydx=xy^(2)dx

Solve ydx=(1+x^2)dy

y log ydx-xdy=0

Solve (x+y)dy=ydx

Solve xdx+ydy=xdy-ydx.