Home
Class 12
MATHS
Construct a matrix of order 2xx3, whose ...

Construct a matrix of order `2xx3`, whose elements are given by (a) `aij=((i-2j)^(2))/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To construct a matrix of order \(2 \times 3\) with elements defined by the formula \(a_{ij} = \frac{(i - 2j)^2}{2}\), we will follow these steps: ### Step 1: Identify the matrix dimensions The matrix is of order \(2 \times 3\), which means it has 2 rows and 3 columns. ### Step 2: Define the indices We will denote the elements of the matrix as follows: - Row 1: \(a_{11}, a_{12}, a_{13}\) - Row 2: \(a_{21}, a_{22}, a_{23}\) ### Step 3: Calculate each element using the formula We will substitute the values of \(i\) (row index) and \(j\) (column index) into the formula \(a_{ij} = \frac{(i - 2j)^2}{2}\). #### For Row 1 (\(i = 1\)): 1. **Calculate \(a_{11}\)**: \[ a_{11} = \frac{(1 - 2 \cdot 1)^2}{2} = \frac{(1 - 2)^2}{2} = \frac{(-1)^2}{2} = \frac{1}{2} \] 2. **Calculate \(a_{12}\)**: \[ a_{12} = \frac{(1 - 2 \cdot 2)^2}{2} = \frac{(1 - 4)^2}{2} = \frac{(-3)^2}{2} = \frac{9}{2} \] 3. **Calculate \(a_{13}\)**: \[ a_{13} = \frac{(1 - 2 \cdot 3)^2}{2} = \frac{(1 - 6)^2}{2} = \frac{(-5)^2}{2} = \frac{25}{2} \] #### For Row 2 (\(i = 2\)): 1. **Calculate \(a_{21}\)**: \[ a_{21} = \frac{(2 - 2 \cdot 1)^2}{2} = \frac{(2 - 2)^2}{2} = \frac{0^2}{2} = 0 \] 2. **Calculate \(a_{22}\)**: \[ a_{22} = \frac{(2 - 2 \cdot 2)^2}{2} = \frac{(2 - 4)^2}{2} = \frac{(-2)^2}{2} = \frac{4}{2} = 2 \] 3. **Calculate \(a_{23}\)**: \[ a_{23} = \frac{(2 - 2 \cdot 3)^2}{2} = \frac{(2 - 6)^2}{2} = \frac{(-4)^2}{2} = \frac{16}{2} = 8 \] ### Step 4: Construct the matrix Now we can construct the matrix using the calculated elements: \[ A = \begin{pmatrix} \frac{1}{2} & \frac{9}{2} & \frac{25}{2} \\ 0 & 2 & 8 \end{pmatrix} \] ### Final Answer: The required matrix is: \[ A = \begin{pmatrix} \frac{1}{2} & \frac{9}{2} & \frac{25}{2} \\ 0 & 2 & 8 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    CBSE COMPLEMENTARY MATERIAL|Exercise FOUR MARK QUESTIONS|41 Videos
  • MATRICES AND DETERMINANTS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos
  • MATRICES AND DETERMINANTS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos
  • LINEAR PROGRAMMING

    CBSE COMPLEMENTARY MATERIAL|Exercise ONE MARKS QUESTIONS|8 Videos
  • PRACTICE PAPER I

    CBSE COMPLEMENTARY MATERIAL|Exercise Section D|6 Videos

Similar Questions

Explore conceptually related problems

construst a matrix of order 2 xx 2 whose elements are defined as a_(ij)=i+3j.

Construct a 3xx4 matrix, whose elements are given by : a_(ij)=2i-j

Construct a 2xx3 matrix A = [a_ij], whose elements are given by a_(ij) =(i+2j)^(2)/2

Construst a 2xx2 matrix ,A=[ a_(ij) ], whose elements are given by : (i) a_(ij)=((i+j)^(2))/(2)(ii)a_(ij)=(i)/(j) (iii) a_(ij)=((i+2j)^(2))/(2)

Construct a matrix of order 3xx2 , whose elements a_(ij) given by aij = {{:(2i-3j,igej),(3i+j,iltj):}

Construct a 2xx2 matrix A=[a_(ij)] whose elements are given by : a_(ij)=((i+j)^(2))/(2)

Construct a 2xx2 matrix A whose elements are given by a_(ij)=2i+j

Construct a 3xx2 matrix whose elements are given by a_(ij)=(2i-j).

Construct a 3xx2 matrix whose elements are given by a_(1)=2i-j

Construct a 2xx2 matrix A=[a_(ij)] whose elements are given by a_(ij)=((i+2j)^(2))/(2)

CBSE COMPLEMENTARY MATERIAL-MATRICES AND DETERMINANTS-TWO MARK QUESTIONS
  1. Construct a matrix of order 2xx3, whose elements are given by (a) aij...

    Text Solution

    |

  2. If A(x(1),y(1)),B(x(2),y(2))andC(x(3),y(3)) are vertices of on equilat...

    Text Solution

    |

  3. Show that the elements on the main diagonal of a skew-symmetric mat...

    Text Solution

    |

  4. Find the value of x and y, when (i) [{:(x+y),(x-y):}]=[{:(8),(4):}] ...

    Text Solution

    |

  5. If A and B are symmetric matrices of the same order, show that AB+BA i...

    Text Solution

    |

  6. Show that |[0,p-q,p-r] , [q-p, 0, q-r] , [r-p, r-q, 0]|=0

    Text Solution

    |

  7. Let A=[(2,5),(4,6)] Prove that A+A^T is symmetric matrix

    Text Solution

    |

  8. If A=[(2),(3),(5)]andB=["1 2 3"], Verify (AB)'=B'A'

    Text Solution

    |

  9. If A=[{:(" "1," "0,-2),(" "3,-1," "0),(-2," "1," "1):}],B=[{:(" "0,5,-...

    Text Solution

    |

  10. If A=[1 3 2 1] , find the determinant of the matrix A^2-2A .

    Text Solution

    |

  11. Without expanding evaluate the determinant =|265 240 219 240 225 19...

    Text Solution

    |

  12. If D(1)=|(a,b,c),(x,y,z),(l,m,n)|andD(2)=|(m,-b,y),(-l,a,-x),(n,-c,z)|...

    Text Solution

    |

  13. If A is a skew-symmetric matrix of odd order n , then |A|=0

    Text Solution

    |

  14. Write the minors and co-factors of each elements of the first column o...

    Text Solution

    |

  15. For what values of x and y are the following matrices equal ? A=[(2x...

    Text Solution

    |

  16. If A=[(2,-2),(4,2),(-5,1)],B=[(8,0),(4,-2),(3,6)], find matrix 'C', su...

    Text Solution

    |

  17. If A=[(x,0),(1,1)]andB=[(1,0),(5,1)] find x such that A^(2)=B.

    Text Solution

    |

  18. Construct a matrix of order 3xx2, whose elements a(ij) given by aij ...

    Text Solution

    |