Home
Class 12
MATHS
If x , y , z are all different real numb...

If `x , y , z` are all different real numbers, then `1/((x-y)^2)+1/((y-z)^2)+1/((z-x)^2)=(1/(x-y)+1/(y-z)+1/(z-x))^2`

Text Solution

Verified by Experts

The correct Answer is:
(i) True; (ii) False
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If x,y,z are all different real numbers,then prove that (1)/((x-y)^(2))+(1)/((y-z)^(2))+(1)/((z-x)^(2))=((1)/(x-z)+(1)/(y-z)+(1)/(z-x))^(2)

If x,y,z are distinct real numbers then the value of ((1)/(x-y))^(2)+((1)/(y-z))^(2)+((1)/(z-x))^(2) is

Knowledge Check

  • If x, y and 2 are positive real numbers, then sqrt ( x ^(-1) y). sqrt ( y ^(-1) z). sqrt (z ^(-1) x ) is equal to

    A
    2
    B
    3
    C
    0
    D
    1
  • Similar Questions

    Explore conceptually related problems

    If x,y,z are positive real numbers show that: sqrt(x^(-1)y)*sqrt(y^(-1)z)*sqrt(z^(-1)x)=1

    (2-3x)/(x)+(2-3y)/(y)+(2-3z)/(z)=0 then (1)/(x)+(1)/(y)+(1)/(z)=

    If xy + yz + zx = 1 , show that x/(1-x^(2)) +y/(1-y^(2)) + z/(1-z^(2))= 4xyz/((1-x^(2))(1-y^(2)) (1-z^(2)))

    Prove that : =2|{:(1,1,1),(x,y,rz),(x^(2),y^(2),z^(2)):}|=(x-y)(y-z)(z-x)

    If xy + yz + zx = 1 , show that x/(1-x^(2)) +y/(1-y^(2)) + z/(1-z^(2))= (4xyz)/((1-x^(2))(1-y^(2)) (1-z^(2)))

    If x+y+z=0 , then what is the value of (1)/( x^(2) + y^(2) -z^(2) )+ (1)/( y^(2) +z^(2) -x^(2) )+ (1)/( z^(2) + x^(2) - y^(2) ) ?

    x,y,z are distinct real numbers such that x+1/y = y + 1/z =z + 1/x The value of x^(2)y^(2)z^(2) is………..