Home
Class 12
MATHS
Value of ((x^(4)+x^(2)+1))/((x^(2)-x+1))...

Value of `((x^(4)+x^(2)+1))/((x^(2)-x+1))-(x+1)^(2)` is

A

x

B

`-x`

C

2x

D

3x

Text Solution

Verified by Experts

The correct Answer is:
B
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Let the equation x^(5) + x^(3) + x^(2) + 2 = 0 has roots x_(1), x_(2), x_(3), x_(4) and x_(5), then find the value of (x_(2)^(2) - 1)(x_(3)^(2) - 1)(x_(4)^(2) - 1)(x_(5)^(2) - 1).

If x^(2) - 3x + 1 =0 , then the value of (x ^(6) + x ^(4) + x ^(2)+ 1)/(x ^(3)) will be:

Knowledge Check

  • If x^(2) + 1 = 3x , then the value of ((x^(4) + x^(-2)))/((x^(2) + 5x+1)) is :

    A
    `2(1)/(3)`
    B
    `2(1)/(4)`
    C
    `4(1)/(2)`
    D
    `3(1)/(2)`
  • If x^(2) + 1 = 2 x then the value of (x^(4) +(1)/( x^(2)))/(x^(2) - 3 x + 1) is

    A
    0
    B
    1
    C
    2
    D
    `-2`
  • If x^(2)-5x+1=0 , then the value of (x^(4) + (1)/(x^(2))) div (x^(2)+1) is

    A
    25
    B
    21
    C
    22
    D
    24
  • Similar Questions

    Explore conceptually related problems

    If x^(2) - 6x + 1 = 0 , then the value of (x^(4) + (1)/(x^(2))) div (x^(2) + 1) is :

    If x^(4) - 3x^(2) - 1 = 0 , then the value of (x^(6)-3x^(2)+(3)/(x^(2))-(1)/(x^(6))+1) is :

    If x + (1)/( x) = 17 what is the value of (x^(4) + (1)/( x^(2)))/(x^(2)- 3 x + 1) ?

    What is the simplified value of (x + (1)/(x)) (x ^(2) + (1)/( x ^(2))) (x ^(4) + (1)/(x ^(4))) (x ^(6) + (1)/(x ^(8))) (x ^(16) + (1)/(x ^(6))) ?

    What is the value of (1+x)/(1-x^(4))+(x^(2))/(1+x^(2))xx x (1-x) ?