Home
Class 11
MATHS
Prove that: s in^2 24^0-s in^2 6^0=(sqrt...

Prove that: `s in^2 24^0-s in^2 6^0=(sqrt(5)-1)/8`

Answer

Step by step text solution for Prove that: s in^2 24^0-s in^2 6^0=(sqrt(5)-1)/8 by MATHS experts to help you in doubts & scoring excellent marks in Class 11 exams.

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise EXERCISES 3H|12 Videos
  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise EXERCISES 3I|16 Videos
  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise EXERCISES 3F|24 Videos
  • STRAIGHT LINES

    NAGEEN PRAKASHAN|Exercise Exercise|206 Videos

Similar Questions

Explore conceptually related problems

Prove that: sin^(2)24^(0)-sin^(2)6^(0)=(sqrt(5)-1)/(8)

Prove that: sin^(2)24^(0)-sin^(2)6^(0)=(sqrt(5)-1)/(8)

Prove that: sin^(2)42^(0)-cos^(2)78^(0)=(sqrt(5)+1)/(8)

Prove that: cos^(2)48^(0)-sin^(2)12^(0)=(sqrt(5)+1)/(8)

Prove that (i) "sin"^(2) 24^(@) - sin^(2) 6^(@) =((sqrt(5)-1))/(8) " "(ii) "sin"^(2) 72^(@) - cos^(2) 30^(@) =(sqrt(5)-1)/(8)

Prove that: sin36^(0)=(sqrt(10-2sqrt(5)))/(4)

Prove that : sin 75^0 = (sqrt(6) + sqrt(2))/4

Prove that: s in10^(0)s in50^(0)s in60^(0)s in70^(0)=(sqrt(3))/(16)

Prove that: sin36^(@)s in72^(0)s in108^(0)s in144^(0)=(5)/(16)

Prove that: cos18^(0)=(sqrt(10+2sqrt(5)))/(4)