Home
Class 12
MATHS
If tan(cos^(-1) x) = sin (cot^(-1).(1)/(...

If `tan(cos^(-1) x) = sin (cot^(-1).(1)/(2))`, then find the value of x

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan(\cos^{-1} x) = \sin(\cot^{-1} \frac{1}{2}) \), we will follow these steps: ### Step 1: Rewrite the right-hand side We start with the right-hand side of the equation: \[ \sin(\cot^{-1} \frac{1}{2}) \] Using the identity \( \sin(\cot^{-1} y) = \frac{y}{\sqrt{1+y^2}} \), we can substitute \( y = \frac{1}{2} \): \[ \sin(\cot^{-1} \frac{1}{2}) = \frac{\frac{1}{2}}{\sqrt{1+\left(\frac{1}{2}\right)^2}} = \frac{\frac{1}{2}}{\sqrt{1+\frac{1}{4}}} = \frac{\frac{1}{2}}{\sqrt{\frac{5}{4}}} = \frac{\frac{1}{2}}{\frac{\sqrt{5}}{2}} = \frac{1}{\sqrt{5}} \] ### Step 2: Rewrite the left-hand side Next, we rewrite the left-hand side: \[ \tan(\cos^{-1} x) \] Using the identity \( \tan(\cos^{-1} x) = \frac{\sqrt{1-x^2}}{x} \): \[ \tan(\cos^{-1} x) = \frac{\sqrt{1-x^2}}{x} \] ### Step 3: Set the two sides equal Now we set the two sides equal to each other: \[ \frac{\sqrt{1-x^2}}{x} = \frac{1}{\sqrt{5}} \] ### Step 4: Cross-multiply Cross-multiplying gives us: \[ \sqrt{1-x^2} = \frac{x}{\sqrt{5}} \] ### Step 5: Square both sides Next, we square both sides to eliminate the square root: \[ 1 - x^2 = \frac{x^2}{5} \] ### Step 6: Multiply through by 5 To eliminate the fraction, we multiply through by 5: \[ 5(1 - x^2) = x^2 \] This simplifies to: \[ 5 - 5x^2 = x^2 \] ### Step 7: Rearrange the equation Rearranging gives us: \[ 5 = 6x^2 \] Thus, \[ x^2 = \frac{5}{6} \] ### Step 8: Solve for x Taking the square root of both sides, we find: \[ x = \sqrt{\frac{5}{6}} = \frac{\sqrt{5}}{\sqrt{6}} = \frac{\sqrt{5}}{\sqrt{6}} \cdot \frac{\sqrt{6}}{\sqrt{6}} = \frac{\sqrt{30}}{6} \] ### Final Answer Thus, the value of \( x \) is: \[ x = \frac{\sqrt{30}}{6} \] ---

To solve the equation \( \tan(\cos^{-1} x) = \sin(\cot^{-1} \frac{1}{2}) \), we will follow these steps: ### Step 1: Rewrite the right-hand side We start with the right-hand side of the equation: \[ \sin(\cot^{-1} \frac{1}{2}) \] Using the identity \( \sin(\cot^{-1} y) = \frac{y}{\sqrt{1+y^2}} \), we can substitute \( y = \frac{1}{2} \): ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 7.4|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 7.5|13 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 7.2|6 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise JEE Previous Year|20 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

Solve for x:tan cos^(-1)x=sin cot^(-1)((1)/(2))

If A=e^(cos(cos^(-1)(x^(2))+tan (cot^(-1)(x^(2)) then find the minimum value of A

Knowledge Check

  • If tan(cos^(-1)x) =sin cot^(-1)(1//2) , then the value of x

    A
    `sqrt(5)`
    B
    `-sqrt(5)`
    C
    `sqrt(5)//3`
    D
    `-sqrt(5)//3`
  • If: cos(tan^(-1)x)=sin (cot^(-1).(3)/(4)), then : x =

    A
    `1/2`
    B
    `3/4`
    C
    `pm(5)/(6)`
    D
    none of these
  • If sin (cot^(-1)(1-x))=cos(tan^(-1)(-x)) , then x is

    A
    1
    B
    `(1)/(2)`
    C
    0
    D
    `-(1)/(2)`
  • Similar Questions

    Explore conceptually related problems

    If tan^(-1)x-cot^(-1)x=tan^(-1)(1)/(sqrt(3)) find the value of x.

    cos(tan^(-1)backslash(1)/(5)+cot^(-1)x)=0 then find the value of x

    sin(Cot^-1((3)/(4)))=cos(tan^(-1)x) ,find the value of x .

    If tan^(-1)x+sin^(-1)x=-(2 pi)/(3) then the value of cos^(-1)x+cot^(-1)x is equal to

    If [ x cos ( cot^(-1) x ) + sin ( cot^(-1) x) ]^(2) = (51)/(50) then the positive value of x is