Home
Class 12
MATHS
If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y),...

If `sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y)`, then prove that `(dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))`

Text Solution

Verified by Experts

`" "sqrt (1-x^(2)) + sqrt(1-y^(2)) = a(x-y)`
Let `x = sinA" ", " " y = sinB`
`" " sqrt(1 - sin^(2)A) + sqrt(1- sin^(2)B) = a ( sin A - sinB)`
`" " cos A+cosB = a(sinA - sinB)`
`rArr 2 cos ((A+ B)/(2)) cos ((A-B)/(2)) = 2a cos((A+B)/(2)) sin ((A-B)/(2))`
`" " rArr cos((A-B)/(2)) = a sin ((A-B)/(2))`
`rArr cot((A-B)/(2))=a`
`" "rArr (A-B)/(2) =cot^(-1) a`
`rArr A-B= 2 cot^(-1)a `
`rArr sin^(-1) x - sin^(-1)y = 2 cot^(-1)a`
differentiating w.r.t x
`rArr (1)/(sqrt(1-x^(2)) - (1)/(sqrt(1-y^(2))))(dy)/(dx) =0`
`rArr (dy)/(dx) = (sqrt(1-y^(2)))/(sqrt(1-x^(2)))`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SAMPLE PAPER 2019

    XII BOARDS PREVIOUS YEAR|Exercise Section C 28 B|1 Videos
  • SAMPLE PAPER 2019

    XII BOARDS PREVIOUS YEAR|Exercise Section C 31A|1 Videos
  • SAMPLE PAPER 2019

    XII BOARDS PREVIOUS YEAR|Exercise Section C|4 Videos
  • QUESTION PAPER 2023

    XII BOARDS PREVIOUS YEAR|Exercise Question|45 Videos
  • XII Boards

    XII BOARDS PREVIOUS YEAR|Exercise All Questions|263 Videos

Similar Questions

Explore conceptually related problems

If sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y), prove that (dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y), prove that (dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

Knowledge Check

  • If sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y) , then (dy)/(dx) equals

    A
    `sqrt((1-x^(2))(1-y^(2)))`
    B
    `sqrt((1-y^(2))/(1-x^(2)))`
    C
    `sqrt((1-x^(2))/(1-y^(2)))`
    D
    none of these
  • Similar Questions

    Explore conceptually related problems

    sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y), provethat (dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

    If sqrt(1-x^(4))+sqrt(1-y^(4))=k(x^(2)-y^(2)), prove that (dy)/(dx)=(x sqrt(1-y^(4)))/(y sqrt(1-x^(4)))

    If y sqrt(1-x^(2))+x sqrt(1-y^(2))=1. Prove that (dy)/(dx)=-sqrt((1-y^(2))/(1-x^(2)))

    If sqrt(1-x^(6))+sqrt(1-y^(6))=a(x^(3)-y^(3)), then prove that (dy)/(dx)=(x^(2))/(y^(2))sqrt((1-y^(6))/(1-x^(6)))

    y sqrt(1-x^(2))+x sqrt(1-y^(2))=1,prov et h a t (dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

    If y sqrt(1-x^(2))+x sqrt(1-y^(2))=1 show that (dy)/(dx)=-sqrt((1-y^(2))/(1-x^(2)))

    sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y),show(dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))