Home
Class 12
MATHS
Prove that : |{:((y+z)^(2),x^(2),x^(2)),...

Prove that : `|{:((y+z)^(2),x^(2),x^(2)),(y^(2),(x+z)^(2),y^(2)),(z^(2),z^(2),(x+y)^(2)):}|=2xyz (x+y+z)^(3)`

Text Solution

Verified by Experts

`LHS=|{:((y+z)^(2),x^(2),y^(2)),(y^(2), (z+x)^(2),y^(2)),(z^(2) ,z^(2) ,(x+y)^(2)):}|`
Apply `C_(2) to C_(1), C_(3) to C_(3) - C_(1)`
`|{:(,(y+z)^(2),x^(2) - (y+z)^(2) ,x^(2)-(y+z)^(2)),(,y^(2),(z+x)^(2)-y^(2) , 0),(,z^(2) ,0,(x+y)^(2)-z^(2)):}|`
`|{:(,(y+z^(2)),(x+y+z),(x+y+z)(x-y-z)),(,y^(2) ,(z+x+y)(z+x-y),0),(,z^(2) ,0,(x+y+z)(x+y-z)):}|`
Taking (x+x+y) common form `C_(2)` as well as `c_(3)`
`=(x+y +z)^(2)|{:((y+z)^(2),(x-y-z),(x-y-z)),(y^(2),(z+x-y),0),(z^(2),0,(x+y+z)):}|`
Apply `R_1 to R_2 to R_3`
`= (x+y+z)^(2) |{:(2yz,,-2z,,-2y),(y^(2),,(z+x+y),,0),(z^(2),,0,,(x+y-z)):}|`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SAMPLE PAPER 2019

    XII BOARDS PREVIOUS YEAR|Exercise Section D 33 B|1 Videos
  • SAMPLE PAPER 2019

    XII BOARDS PREVIOUS YEAR|Exercise Section D|2 Videos
  • SAMPLE PAPER 2019

    XII BOARDS PREVIOUS YEAR|Exercise Section C 31B|1 Videos
  • QUESTION PAPER 2023

    XII BOARDS PREVIOUS YEAR|Exercise Question|45 Videos
  • XII Boards

    XII BOARDS PREVIOUS YEAR|Exercise All Questions|263 Videos

Similar Questions

Explore conceptually related problems

Prove that |{:(x^(2),,x^(2)-(y-z)^(2),,yz),(y^(2),,y^(2)-(z-x)^(2),,zx),(z^(2),,z^(2)-(x-y)^(2),,xy):}| =(x-y) (y-z) (z-x)(x+y+z) (x^(2)+y^(2)+z^(2))

Using properties of determinants, prove that : |{:((x+y)^(2),zx,xy),(zx,(z+y)^(2),xy),(zy,xy,(z+x)^(2)):}|=2xyz(x+y+z)^(3) .

Knowledge Check

  • (x+y)^(2)-z^(2)=-9, (y+z)^(2)-x^(2)=15, (z+x)^(2)-y^(2)=3

    A
    (2,3,4)
    B
    (1,-1,-3)
    C
    `-1,1,3`
    D
    none
  • Similar Questions

    Explore conceptually related problems

    Prove that : =2|{:(1,1,1),(x,y,rz),(x^(2),y^(2),z^(2)):}|=(x-y)(y-z)(z-x)

    prove that: |(y^(2)z^(2),yz,y+z),(z^(2)x^(2),zx,z+x),(x^(2)y^(2),xy,x+y)|=0

    Prove the following : |{:(x,y,z),(x^(2),y^(2),z^(2)),(x^(3),y^(3),z^(3)):}|=|{:(x,x^(2),x^(3)),(y,y^(2),y^(3)),(z,z^(2),z^(3)):}|=xyz(x-y)(y-z)(z-x)

    The value of (x^(2)-(y-z)^(2))/((x+z)^(2)-y^(2))+(y^(2)-(x-z)^(2))/((x+y)^(2)-z^(2))+(z^(2)-(x-y)^(2))/((y+z)^(2)-x^(2)) is -1(b)0(c)1(d) None of these

    The value of (x^(2)-(y-z)^(2))/((x+z)^(2)-y^(2))+(y^(2)-(x-z)^(2))/((x+y)^(2)-z^(2))+(z^(2)-(x-y)^(2))/((y+z)^(2)-x^(2))

    Prove that : |{:(x-y-z,2x,2x),(2y,y-z-x,2y),(2z,2z,z-x-y):}|

    Prove that : |{:(y+z,x,y),(z+x,z,x),(x+y,y,z):}|=(x+y+z)(x-z)^(2)