Let r be the radius and the h be the height of half cylinder
Volume `=(1)/(2) pir^(2)h = V` (Constant )…………….(1)
Total surface area of half cylinder is
`S=2(1/2pir^(2))+pirh+2rh……….(2)`
from (1) put the value of h in (2)
`S=(pir^(2))+pir((2V)/(pir^(2)))+2r((2V)/(pir^(2)))`
`S=(pir^(2))+(1/r)[(4V)/pi+2V]`
`(ds)/(dr)=(2pir)+((-1)/r^(2))[(4V)/pi+2V]....(3)`
For maxima/minima`(ds)/(dr)`=0
`rArr(2pir)+((-1)/r^(2))[(4V)/pi+2V]=0`
`rArr(2pir)=(1/r^(2))[(4V+2Vpi)/pi]`
`rArrpir^(3)=V[(2+pi)/pi)]`
`rArrV=(pi^(2)r^(3))/(pi+2)..........(4)`
From (1) and (4)
`rArr1/2pir^(2)h=(pi^(2)r^(3))/(pi+2)`
`rArrh/(2r)=pi/(pi+2)`
`rArr` height : diameter `=pi:pi+2`
Differentiating (3) with respect to r
`(d^(2)s)/(dr(2))=(2pi)+(2)/(r^(3))[(4V)/pi+2V]`= positive (as all quantities are +ve)
So, S is minimum when
height: diameter=`pi:pi+2`