Home
Class 12
MATHS
"If "x^(y)=e^(x-y)," prove that "(dy)/(d...

`"If "x^(y)=e^(x-y)," prove that "(dy)/(dx)=(log x)/((1+log x)^(2)).`

Text Solution

AI Generated Solution

To prove that \(\frac{dy}{dx} = \frac{\log x}{(1 + \log x)^2}\) given the equation \(x^y = e^{x - y}\), we will follow these steps: ### Step 1: Take the logarithm of both sides We start with the equation: \[ x^y = e^{x - y} \] Taking the natural logarithm on both sides gives: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.6|8 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.7|6 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.4|10 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|25 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

x^(y)=e^(x-y) so,prove that (dy)/(dx)=(log x)/((1+log x)^(2))

If x^(y)=e^(x-y) then prove that (dy)/(dx)=(ln x)/((1+ln x)^(2))

If x^(y)=e^(x-y), then show that (dy)/(dx)=(log x)/((1+log x)^(2))

If x^(y)=e^(x-y), show that (dy)/(dx)=(log x)/({log(xe)}^(2))

If y log x=x-y prove that (dy)/(dx)=(log x)/((1+log x)^(2))

If x=e^(x/y), prove that (dy)/(dx)=(x-y)/(x log x)

if x^(y)=e^(x-y) then prove that (dy)/(dx)=(log_(e)x)/((1+log_(e)x)^(2))

If e^(y)=y^(x), prove that (dy)/(dx)=((log y)^(2))/(log y-1)

If x=e^((x)/(y)), prove that (dy)/(dx)=(x-y)/(x log x)

If y^(x)=e^(y-x), prove that (dy)/(dx)=((1+log y)^(2))/(log y)