Home
Class 12
MATHS
"If "f(x)=|{:(x+a^(2),ab,ac),(ab, x+b^(2...

`"If "f(x)=|{:(x+a^(2),ab,ac),(ab, x+b^(2),bc),(ac,bc, x+c^(2)):}|," then prove that "`
`f'(x)=3x^(2)+2x(a^(2)+b^(2)+c^(2))`.

Text Solution

Verified by Experts

We have
`f(x)=|{:(x+a^(2),ab,ac),(ab,x+b^(2),bc),(ac,bc,x+c^(2)):}|`
`therefore" "f'(x)=|{:(1,0,0),(ab,x+b^(2),bc),(ac,bc,x+c^(2)):}|+|{:(x+a^(2),ab,ac),(0,1,0),(ac,bc,x+c^(2)):}|+|{:(x+a^(2),ab,ac),(ab,x+b^(2),bc),(0,0,1):}|`
`=|{:(x+b^(2),bc),(bc,x+c^(2)):}|+|{:(x+a^(2),ac),(ac,x+c^(2)):}|+|{:(x+a^(2),ab),(ab,x+b^(2)):}|`
`=[(x+b^(2))(x+c^(2))-b^(2)c^(2)]+[(x+a^(2))(x+c^(2))-a^(2)c^(2)]`
`=3x^(2)+2x(a^(2)+b^(2)+c^(2))`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.8|15 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.9|14 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.6|8 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|25 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

f(x)=det[[x+a^(2),ab,acab,x+b^(2),bcab,bc,x+c^(2)]], find f'(x)

If f(x)=|x+a^2a b a c a b x+b^2b c a c b c x+c^2|,t h e n prove that f^(prime)(x)=3x^2+2x(a^2+b^2+c^2)dot

Knowledge Check

  • What is |{:(-a^(2),ab,ac),(ab,-b^(2),bc),(ac,bc,-c^(2)):}| equal to ?

    A
    4 abc
    B
    `4a^(2)bc`
    C
    `4a^(2)b^(2)c^(2)`
    D
    `-4a^(2)b^(2)c^(2)`
  • If |(-a^2,ab,ac),(ab,-b^2,bc),(ac,bc,-c^2)|=ka^2b^2c^2 , then k =

    A
    4
    B
    6
    C
    `-4`
    D
    8
  • What is the value of |(-a^(2),ab,ac),(ab,-b^(2),bc),(ac,bc,-c^(2))| ?

    A
    4abc
    B
    `4a^(2)bc`
    C
    `4a^(2)b^(2)c^(2)`
    D
    `-4a^(2)b^(2)c^(2)`
  • Similar Questions

    Explore conceptually related problems

    |[x^2+a^2,ab,ac] , [ab,x^2+b^2,bc] , [ac,bc,x^2+c^2]|=

    If |(-a^2,ab,ac),(ab,-b^2,bc),(ac,bc,-c^2)|=lamdaa^2b^2c^2 , then lamda equals

    If |(a^2+1,ab,ac),(ab,b^2+1,bc),(ac,bc,c^2+1)|=1 , where a,b,c are real , then

    One factor of |(a^(2) + x,ab,ac),(ab,b^(2) + x,cb),(ca,cb,c^(2) + x)| , is

    If A=[(0,c,-b),(-c,0,a),(b,-a,0)],B=[(a^(2),ab,ac),(ab,b^(2),bc),(ac,bc,c^(2))] then AB=