Home
Class 12
MATHS
"If "y=(tan x)^((tan x)^(tan x))," then ...

`"If "y=(tan x)^((tan x)^(tan x))," then find "(dy)/(dx).`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( \frac{dy}{dx} \) for the function \( y = (\tan x)^{(\tan x)^{(\tan x)}} \), we can follow these steps: ### Step 1: Take the logarithm of both sides We start by taking the natural logarithm of both sides to simplify the expression: \[ \ln y = \ln \left( (\tan x)^{(\tan x)^{(\tan x)}} \right) \] ### Step 2: Apply the logarithmic identity Using the property of logarithms, \( \ln(a^b) = b \ln a \), we can rewrite the right-hand side: \[ \ln y = (\tan x)^{(\tan x)} \cdot \ln(\tan x) \] ### Step 3: Take the logarithm again Next, we take the logarithm of the right-hand side again: \[ \ln(\ln y) = \ln\left((\tan x)^{(\tan x)} \cdot \ln(\tan x)\right) \] ### Step 4: Expand using logarithmic properties Using the property \( \ln(m \cdot n) = \ln m + \ln n \): \[ \ln(\ln y) = \ln\left((\tan x)^{(\tan x)}\right) + \ln(\ln(\tan x)) \] Now applying the logarithmic identity again: \[ \ln(\ln y) = (\tan x) \ln(\tan x) + \ln(\ln(\tan x)) \] ### Step 5: Differentiate both sides Now we differentiate both sides with respect to \( x \): Using implicit differentiation on the left side: \[ \frac{1}{\ln y} \cdot \frac{1}{y} \cdot \frac{dy}{dx} = \frac{d}{dx}\left((\tan x) \ln(\tan x) + \ln(\ln(\tan x))\right) \] ### Step 6: Differentiate the right side Now we differentiate the right side using the product rule and chain rule: 1. For \( (\tan x) \ln(\tan x) \): - Differentiate using the product rule: \[ \frac{d}{dx}[(\tan x) \ln(\tan x)] = \sec^2 x \ln(\tan x) + \tan x \cdot \frac{1}{\tan x} \sec^2 x = \sec^2 x \ln(\tan x) + \sec^2 x \] 2. For \( \ln(\ln(\tan x)) \): - Using the chain rule: \[ \frac{d}{dx}[\ln(\ln(\tan x))] = \frac{1}{\ln(\tan x)} \cdot \frac{1}{\tan x} \sec^2 x \] ### Step 7: Combine the derivatives Combining these results: \[ \frac{1}{\ln y} \cdot \frac{1}{y} \cdot \frac{dy}{dx} = \sec^2 x \ln(\tan x) + \sec^2 x + \frac{\sec^2 x}{\tan x \ln(\tan x)} \] ### Step 8: Solve for \( \frac{dy}{dx} \) Now, isolate \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = y \cdot \ln y \left( \sec^2 x \ln(\tan x) + \sec^2 x + \frac{\sec^2 x}{\tan x \ln(\tan x)} \right) \] ### Step 9: Substitute back for \( y \) Finally, substitute back \( y = (\tan x)^{(\tan x)^{(\tan x)}} \): \[ \frac{dy}{dx} = (\tan x)^{(\tan x)^{(\tan x)}} \cdot \ln\left((\tan x)^{(\tan x)^{(\tan x)}}\right) \left( \sec^2 x \ln(\tan x) + \sec^2 x + \frac{\sec^2 x}{\tan x \ln(\tan x)} \right) \] ### Final Answer Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = (\tan x)^{(\tan x)^{(\tan x)}} \cdot \left((\tan x)^{(\tan x)} \ln(\tan x) \cdot \sec^2 x + \sec^2 x + \frac{\sec^2 x}{\tan x \ln(\tan x)}\right) \]

To find the derivative \( \frac{dy}{dx} \) for the function \( y = (\tan x)^{(\tan x)^{(\tan x)}} \), we can follow these steps: ### Step 1: Take the logarithm of both sides We start by taking the natural logarithm of both sides to simplify the expression: \[ \ln y = \ln \left( (\tan x)^{(\tan x)^{(\tan x)}} \right) \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.6|8 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.7|6 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.4|10 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|25 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If y=e^(tan x)+(log x)^(tan x) then find (dy)/(dx)

If y=x^(tan x)+(tan x)^(x) , then find (dy)/(dx)

Knowledge Check

  • If y= tan x , find (dy)/(dx) .

    A
    `sec^(2) x`
    B
    `cosec^(2) x`
    C
    `tan^(2) x`
    D
    `cos^(2) x`.
  • If y= (tan x )^(sin x ) ,then (dy)/(dx)=

    A
    ` y( sec ^(2)x +cos x )log (tan x )) `
    B
    ` y(sec ^(2) x-(cosx) log (tan x) ) `
    C
    ` y(sec x+(cosx) log (tan x) ) `
    D
    ` y(sec x-(cosx) log (tan x) ) `
  • Similar Questions

    Explore conceptually related problems

    y=x^(tan(x))+(tan x)^(x) , find (dy)/(dx)

    If xy+y^(2)=tan x+y, then find (dy)/(dx)

    "If "xy+y^(2)=tan x + y," then find "(dy)/(dx).

    If y=e^((tan^(-1)x)^(3) then find (dy)/(dx)

    If y=(tan x)^((tan x)^((tan x)(tan x))-oo), then prove that (dy)/(dx)=2 at x=(pi)/(4), then prove

    If (tan^(-1)x)^(y)+y^(cotx)=1, then find (dy)/(dx).