Home
Class 11
MATHS
If |{:((a-x)^(2),(a-y)^(2),(a-z)^(2)),((...

If `|{:((a-x)^(2),(a-y)^(2),(a-z)^(2)),((b-x)^(2),(b-y)^(2),(b-z)^(2)),((c-x)^(2),(c-y)^(2),(c-a)^(2)):}|=0` and vectors `vecA, vecB and vecC` , where `vecA=a^(2)hati=ahatj+hatk` etc. are non-coplanar, then prove that vectors `vecX, vecYand vecZ " where " vecX =x^(2)hati+xhatj+hatk` . etc.may be coplanar.

Text Solution

Verified by Experts

` D = D_(1) D_(2)` (see determinants)
`=2|{:(a^(2),a,1),(b^(2),b,1),(c^(2),c,1):}||{:(1,x,x^(2)),(1,y,y^(2)),(1,z,z^(2)):}| = 0`
since `vecA, vecB and vecC` are non- coplanar, `D_(1) ne 0`,
`D_(2)= 0 or |{:(x^(2),x,1),(y^(2),y,1),(z^(2),z,1):}|=0`
or `vecX , vecY and vecZ` are coplanar.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise JEE Previous Year (Single Question)|28 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise JEE Previous Year (Multiple Question)|11 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise 2.3|18 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|1316 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE|Exercise Solved Examples And Exercises|320 Videos

Similar Questions

Explore conceptually related problems

If |(a-x)^2(a-y)^2(a-z)^2(b-x)^2(b-y)^2(b-z)^2(c-x)^2(c-y)^2(c-a)^2|=0 and vectors vec A , vec B ,a n d vec C , w h e r e vec A=a^2 hat i+a hat j+ hat k , etc, are non-coplanar, then prove that vectors vec X , vec Ya n d vec Z ,w h e r e vec X=x^2 hat i+x hat j+ hat k , etc. may be coplanar.

If |{:((x-a)^(2),,(x-b)^(2),,(x-c)^(2)),((y-a)^(2),,(y-b)^(2),,(y-c)^(2)),((z-a)^(2),,(z-b)^(2),,(z-c)^(2)):}|=0 and vectors X = (x^(2),x,1), Y = (y^(2), y,1), Z = (z^(2), z,1) are non-coplanar, the vectors A = (a^(2), a, 1), B = (b^(2), b,1), C = (c^(2), c, 1) are.......

If the vectors 2hati-hatj+hatk,hati+2hatj-3hatk and 3hati+ahatj+5hatk are coplanar, the prove that a=-4.

Find the projection of vecb+vecc on veca where veca=hati+2hatj+hatk, vecb=hati+3hatj+hatk and vecc=hati+hatk .

Find a vector and unit vector perpendicular to each of the vector veca+vecb and veca-vecb Where veca = 3hati+2hatj+2hatk & vecb = hati+2hatj-2hatk .

Show that the vectors 2veca-vecb+3vecc, veca+vecb-2vecc and veca+vecb-3vecc are non-coplanar vectors (where veca, vecb, vecc are non-coplanar vectors).

If veca=hati+hatj+hatk and vecb = hati-2hatj+hatk then find vector vecc such that veca.veca = 2 and veca xx vecc = vecb

If veca=hati+hatj + hatk and vecb = hati - 2 hatj+hatk then find the vector vecc such that veca.vecc =2 and veca xx vecc=vecb .

If veca=hati+hatj + hatk and vecb = hati - 2 hatj+hatk then find the vector vecc such that veca.vecc =2 and veca xx vecc=vecb .

If vectors veca =hati +2hatj -hatk, vecb = 2hati -hatj +hatk and vecc = lamdahati +hatj +2hatk are coplanar, then find the value of (lamda -4) .