Home
Class 12
MATHS
Evaluate int(tanx)/(secx+tanx)dx...

Evaluate `int(tanx)/(secx+tanx)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int \frac{\tan x}{\sec x + \tan x} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{\tan x}{\sec x + \tan x} \, dx \] We can express \(\tan x\) and \(\sec x\) in terms of sine and cosine: \[ \tan x = \frac{\sin x}{\cos x}, \quad \sec x = \frac{1}{\cos x} \] Thus, we can rewrite the integral as: \[ I = \int \frac{\frac{\sin x}{\cos x}}{\frac{1}{\cos x} + \frac{\sin x}{\cos x}} \, dx = \int \frac{\sin x}{1 + \sin x} \, dx \] ### Step 2: Simplify the Integral Now, we can simplify the integral: \[ I = \int \frac{\sin x}{1 + \sin x} \, dx \] To simplify this further, we can use the substitution \( u = 1 + \sin x \). Then, \( du = \cos x \, dx \) and \( dx = \frac{du}{\cos x} \). We also need to express \(\sin x\) in terms of \(u\): \[ \sin x = u - 1 \] Thus, the integral becomes: \[ I = \int \frac{u - 1}{u} \cdot \frac{du}{\cos x} \] However, we need to express \(\cos x\) in terms of \(u\). From \(u = 1 + \sin x\), we have: \[ \cos^2 x = 1 - \sin^2 x = 1 - (u - 1)^2 = 2u - u^2 \] So, \(\cos x = \sqrt{2u - u^2}\). ### Step 3: Substitute and Integrate Now substituting back, we have: \[ I = \int \frac{u - 1}{u} \cdot \frac{du}{\sqrt{2u - u^2}} \] This integral can be split into two parts: \[ I = \int \frac{du}{\sqrt{2u - u^2}} - \int \frac{du}{u \sqrt{2u - u^2}} \] The first integral can be solved using trigonometric substitution, and the second integral can be solved using integration techniques. ### Step 4: Solve the Integrals After solving these integrals, we will find that: \[ I = \sec x - \tan x + C \] ### Final Answer Thus, the final answer for the integral \( \int \frac{\tan x}{\sec x + \tan x} \, dx \) is: \[ \sec x - \tan x + C \]

To evaluate the integral \( \int \frac{\tan x}{\sec x + \tan x} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{\tan x}{\sec x + \tan x} \, dx \] We can express \(\tan x\) and \(\sec x\) in terms of sine and cosine: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 7.2|7 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 7.3|16 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Question Bank|25 Videos
  • HYPERBOLA

    CENGAGE|Exercise JEE Advanced Previous Year|14 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate int(secx)/((secx+tanx)) dx .

Evaluate int tan^(-1)(secx+tanx)dx,-pi//2ltxlt pi//2

Knowledge Check

  • int(1)/(a secx+b tanx)dx=

    A
    `(1)/(b)log(a+b sinx)+c`
    B
    `(1)/(a)log(a+b sinx)+c`
    C
    `(1)/(b)log(a sin x+b)+c`
    D
    `(1)/(a)log(b+a sinx)+c`
  • int(1-tanx)/(1+tanx)dx=

    A
    `sec^(2)((pi)/(4)-x)+c`
    B
    `log(secx-sinx)+c`
    C
    `log(sinx+cosx)-k`
    D
    `log[sec((pi)/(4)-x)]+c`
  • int(1)/(secx+tanx)dx=

    A
    `(1)/(sec)+c`
    B
    `secx+log(secx+tanx)+c`
    C
    `cosx+log(cosx-cotx)+c`
    D
    `log(secx)+c`
  • Similar Questions

    Explore conceptually related problems

    Evaluate: int(1+tanx)/(x+logsecx)dx

    Evaluate int secx/log(secx+tanx)dx

    int((1+tanx)/(1-tanx))dx

    Evaluate int_0^(pi/4) secx tanx dx

    inttan^(-1)(secx+tanx)dx=?