Home
Class 12
MATHS
Evaluate int (dx)/(x+xlogx)...

Evaluate `int (dx)/(x+xlogx)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int \frac{dx}{x + x \log x} \), we can follow these steps: ### Step 1: Simplify the Denominator We start with the integral: \[ \int \frac{dx}{x + x \log x} \] We can factor out \( x \) from the denominator: \[ = \int \frac{dx}{x(1 + \log x)} \] ### Step 2: Rewrite the Integral Now we can rewrite the integral as: \[ = \int \frac{1}{x(1 + \log x)} \, dx \] ### Step 3: Substitution We will use the substitution: \[ t = 1 + \log x \] Then, we differentiate \( t \) with respect to \( x \): \[ \frac{dt}{dx} = \frac{1}{x} \quad \Rightarrow \quad dt = \frac{1}{x} \, dx \quad \Rightarrow \quad dx = x \, dt \] Since \( x = e^{t-1} \) (from \( \log x = t - 1 \)), we can substitute \( x \) back into the expression for \( dx \): \[ dx = e^{t-1} \, dt \] ### Step 4: Substitute in the Integral Now we substitute \( dx \) and \( x \) into the integral: \[ = \int \frac{e^{t-1} \, dt}{e^{t-1}(1 + \log(e^{t-1}))} \] Since \( \log(e^{t-1}) = t - 1 \), we have: \[ = \int \frac{e^{t-1} \, dt}{e^{t-1}(t)} = \int \frac{dt}{t} \] ### Step 5: Integrate Now we can integrate: \[ = \log |t| + C \] ### Step 6: Substitute Back Finally, we substitute back \( t = 1 + \log x \): \[ = \log |1 + \log x| + C \] ### Final Answer Thus, the evaluated integral is: \[ \int \frac{dx}{x + x \log x} = \log |1 + \log x| + C \]

To evaluate the integral \( \int \frac{dx}{x + x \log x} \), we can follow these steps: ### Step 1: Simplify the Denominator We start with the integral: \[ \int \frac{dx}{x + x \log x} \] We can factor out \( x \) from the denominator: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 7.4|20 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 7.5|9 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 7.2|7 Videos
  • HYPERBOLA

    CENGAGE|Exercise JEE Advanced Previous Year|14 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(dx)/(x+x log x)

Evaluate int 2x dx

Evaluate int (1)/(x log x) dx

Evaluate int sqrt(x)dx

Evaluate: int xe^(x)dx

Evaluate int (x-2)/(3-x)dx

Evaluate int xe^(x)dx

Evaluate: int2^(x)dx

Evaluate int xe^x dx

.Evaluate: int sin(x)dx