Home
Class 12
MATHS
Evaluate int sin x cos x cos2x cos 4x ...

Evaluate `int sin x cos x cos2x cos 4x cos 8x dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int \sin x \cos x \cos 2x \cos 4x \cos 8x \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \sin x \cos x \cos 2x \cos 4x \cos 8x \, dx \] We can multiply and divide by 2: \[ I = \frac{1}{2} \int 2 \sin x \cos x \cos 2x \cos 4x \cos 8x \, dx \] ### Step 2: Use the Double Angle Identity Using the identity \( 2 \sin x \cos x = \sin 2x \), we can rewrite the integral: \[ I = \frac{1}{2} \int \sin 2x \cos 2x \cos 4x \cos 8x \, dx \] ### Step 3: Apply the Double Angle Identity Again Again, we can multiply and divide by 2: \[ I = \frac{1}{4} \int 2 \sin 2x \cos 2x \cos 4x \cos 8x \, dx \] Using the identity \( 2 \sin 2x \cos 2x = \sin 4x \), we have: \[ I = \frac{1}{4} \int \sin 4x \cos 4x \cos 8x \, dx \] ### Step 4: Repeat the Process We repeat the process once more: \[ I = \frac{1}{8} \int 2 \sin 4x \cos 4x \cos 8x \, dx \] Using the identity \( 2 \sin 4x \cos 4x = \sin 8x \), we get: \[ I = \frac{1}{8} \int \sin 8x \cos 8x \, dx \] ### Step 5: Final Application of the Identity We apply the identity again: \[ I = \frac{1}{16} \int 2 \sin 8x \cos 8x \, dx \] Using \( 2 \sin 8x \cos 8x = \sin 16x \), we have: \[ I = \frac{1}{16} \int \sin 16x \, dx \] ### Step 6: Integrate Now we can integrate: \[ I = \frac{1}{16} \left( -\frac{1}{16} \cos 16x \right) + C = -\frac{1}{256} \cos 16x + C \] ### Final Result Thus, the final result of the integral is: \[ I = -\frac{1}{256} \cos 16x + C \]

To evaluate the integral \( \int \sin x \cos x \cos 2x \cos 4x \cos 8x \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \sin x \cos x \cos 2x \cos 4x \cos 8x \, dx \] We can multiply and divide by 2: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 7.3|16 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 7.4|20 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 7.1|9 Videos
  • HYPERBOLA

    CENGAGE|Exercise JEE Advanced Previous Year|14 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int sin x cos x cos2x cos4x cos8xdx

Evaluate int sin x cosx * cos 2x * cos 4x dx

Knowledge Check

  • int cos 4x cos x dx = ?

    A
    `1/10 sin 5x + 1/6 sin 3x + C`
    B
    `1/5 cos 5x - 1/3 cos3x + C`
    C
    `1/10 sin 5x + 1/6 sin 3x + C`
    D
    none of these
  • Similar Questions

    Explore conceptually related problems

    The value of int_( sin )x cos x cos2x cos4x cos8x cos16x)dx is int(sin x cos x cos2x cos4x cos8x cos16x)dx is equal to

    int e^(x)sin x cos x cos2x cos4x.dx

    int sin x*cos x*cos2x*cos4x*cos8x*cos16xdx=

    int((sin x cos x))/(cos2x)dx

    Evaluate int((3 sin x+ 4 cos x)/(4 sin x-3 cos x))dx

    Evaluate: (i) int(sin x+2cos x)/(2sin x+cos x)dx (ii) int(cos4x-cos2x)/(sin4x-sin2x)dx

    Evaluate: int(-sin x+2cos x)/(2sin x+cos x)dx