Home
Class 12
MATHS
Evaluate intcos sqrt(x)dx...

Evaluate `intcos sqrt(x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int \cos(\sqrt{x}) \, dx \), we will use a substitution method. Here’s a step-by-step solution: ### Step 1: Substitution Let \( t = \sqrt{x} \). Then, we have: \[ x = t^2 \] Differentiating both sides with respect to \( x \): \[ dx = 2t \, dt \] ### Step 2: Rewrite the Integral Now, substitute \( t \) and \( dx \) into the integral: \[ \int \cos(\sqrt{x}) \, dx = \int \cos(t) \cdot 2t \, dt \] This simplifies to: \[ 2 \int t \cos(t) \, dt \] ### Step 3: Integration by Parts We will use integration by parts, which states: \[ \int u \, dv = uv - \int v \, du \] Let: - \( u = t \) (thus \( du = dt \)) - \( dv = \cos(t) \, dt \) (thus \( v = \sin(t) \)) Now, applying integration by parts: \[ \int t \cos(t) \, dt = t \sin(t) - \int \sin(t) \, dt \] The integral of \( \sin(t) \) is: \[ \int \sin(t) \, dt = -\cos(t) \] So, we have: \[ \int t \cos(t) \, dt = t \sin(t) + \cos(t) \] ### Step 4: Substitute Back Now, substitute this back into our integral: \[ 2 \int t \cos(t) \, dt = 2(t \sin(t) + \cos(t)) \] Substituting \( t = \sqrt{x} \): \[ = 2(\sqrt{x} \sin(\sqrt{x}) + \cos(\sqrt{x})) \] ### Step 5: Final Answer Thus, the final result of the integral is: \[ \int \cos(\sqrt{x}) \, dx = 2\sqrt{x} \sin(\sqrt{x}) + 2\cos(\sqrt{x}) + C \] where \( C \) is the constant of integration. ---

To evaluate the integral \( \int \cos(\sqrt{x}) \, dx \), we will use a substitution method. Here’s a step-by-step solution: ### Step 1: Substitution Let \( t = \sqrt{x} \). Then, we have: \[ x = t^2 \] Differentiating both sides with respect to \( x \): ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Single)|77 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Multiple)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 7.8|7 Videos
  • HYPERBOLA

    CENGAGE|Exercise JEE Advanced Previous Year|14 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int sqrt(x)" dx "

Evaluate: int(cos sqrt(x))/(sqrt(x))dx

Evaluate: int(cos sqrt(x))/(sqrt(x))dx

Evaluate int x sqrt(3+x)dx

Evaluate int sqrt(x)dx

Evaluate int(1+x)sqrt(x)dx

intcos^3x/sqrt (sinx)dx

Evaluate : int ( sqrt( a/x ) + sqrt( x /a ) ) dx

Evaluate intcos^2xdx

Evaluate: int(sin sqrt(x))/(sqrt(x))dx