• NEET
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • Class 6-10
      • Class 6th
      • Class 7th
      • Class 8th
      • Class 9th
      • Class 10th
    • View All Options
      • Online Courses
      • Distance Learning
      • Hindi Medium Courses
      • International Olympiad
    • NEET
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE (Main+Advanced)
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE Main
      • Class 11th
      • Class 12th
      • Class 12th Plus
  • Classroom
    • NEET
      • 2025
      • 2024
      • 2023
      • 2022
    • JEE
      • 2025
      • 2024
      • 2023
      • 2022
    • Class 6-10
    • JEE Main
      • Previous Year Papers
      • Sample Papers
      • Result
      • Analysis
      • Syllabus
      • Exam Date
    • JEE Advanced
      • Previous Year Papers
      • Sample Papers
      • Mock Test
      • Result
      • Analysis
      • Syllabus
      • Exam Date
    • NEET
      • Previous Year Papers
      • Sample Papers
      • Mock Test
      • Result
      • Analysis
      • Syllabus
      • Exam Date
      • College Predictor
      • Counselling
    • NCERT Solutions
      • Class 6
      • Class 7
      • Class 8
      • Class 9
      • Class 10
      • Class 11
      • Class 12
    • CBSE
      • Notes
      • Sample Papers
      • Question Papers
    • Olympiad
      • NSO
      • IMO
      • NMTC
  • NEW
    • TALLENTEX
    • AOSAT
  • ALLEN E-Store
    • ALLEN for Schools
    • About ALLEN
    • Blogs
    • News
    • Careers
    • Request a call back
    • Book home demo
Home
Class 12
MATHS
Evaluate intcos sqrt(x)dx...

Evaluate `intcos sqrt(x)dx`

To view this video, please enable JavaScript and consider upgrading to a web browser thatsupports HTML5 video

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int \cos(\sqrt{x}) \, dx \), we will use a substitution method. Here’s a step-by-step solution: ### Step 1: Substitution Let \( t = \sqrt{x} \). Then, we have: \[ x = t^2 \] Differentiating both sides with respect to \( x \): \[ dx = 2t \, dt \] ### Step 2: Rewrite the Integral Now, substitute \( t \) and \( dx \) into the integral: \[ \int \cos(\sqrt{x}) \, dx = \int \cos(t) \cdot 2t \, dt \] This simplifies to: \[ 2 \int t \cos(t) \, dt \] ### Step 3: Integration by Parts We will use integration by parts, which states: \[ \int u \, dv = uv - \int v \, du \] Let: - \( u = t \) (thus \( du = dt \)) - \( dv = \cos(t) \, dt \) (thus \( v = \sin(t) \)) Now, applying integration by parts: \[ \int t \cos(t) \, dt = t \sin(t) - \int \sin(t) \, dt \] The integral of \( \sin(t) \) is: \[ \int \sin(t) \, dt = -\cos(t) \] So, we have: \[ \int t \cos(t) \, dt = t \sin(t) + \cos(t) \] ### Step 4: Substitute Back Now, substitute this back into our integral: \[ 2 \int t \cos(t) \, dt = 2(t \sin(t) + \cos(t)) \] Substituting \( t = \sqrt{x} \): \[ = 2(\sqrt{x} \sin(\sqrt{x}) + \cos(\sqrt{x})) \] ### Step 5: Final Answer Thus, the final result of the integral is: \[ \int \cos(\sqrt{x}) \, dx = 2\sqrt{x} \sin(\sqrt{x}) + 2\cos(\sqrt{x}) + C \] where \( C \) is the constant of integration. ---

To evaluate the integral \( \int \cos(\sqrt{x}) \, dx \), we will use a substitution method. Here’s a step-by-step solution: ### Step 1: Substitution Let \( t = \sqrt{x} \). Then, we have: \[ x = t^2 \] Differentiating both sides with respect to \( x \): ...
Doubtnut Promotions Banner Desktop LightDoubtnut Promotions Banner Desktop DarkDoubtnut Promotions Banner Mobile LightDoubtnut Promotions Banner Mobile Dark

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Single)|77 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Multiple)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 7.8|7 Videos
  • HYPERBOLA

    CENGAGE|Exercise JEE Advanced Previous Year|14 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int sqrt(x)" dx "

Evaluate: int(cos sqrt(x))/(sqrt(x))dx

Evaluate: int(cos sqrt(x))/(sqrt(x))dx

Evaluate int x sqrt(3+x)dx

Evaluate int sqrt(x)dx

Evaluate int(1+x)sqrt(x)dx

intcos^3x/sqrt (sinx)dx

Evaluate : int ( sqrt( a/x ) + sqrt( x /a ) ) dx

Evaluate intcos^2xdx

Evaluate: int(sin sqrt(x))/(sqrt(x))dx

CENGAGE-INDEFINITE INTEGRATION-Exercise 7.9
  1. Evaluate int xsin^(2)x dx

    05:14

    |

  2. Evaluate intcos sqrt(x)dx

    01:51

    |

  3. Evaluate: int"t"a n^(-1)sqrt(x)dx

    04:42

    |

  4. Evaluate: ifintf(x)dx=g(x),t h e nintf^(-1)(x)dx

    03:49

    |

  5. Evaluate int[f(x)g^(n)(x)-f^(n)(x)g(x)]dx

    01:41

    |

  6. Evaluate: ifintg(x)dx=g(x),t h e nintg(x){f(x)+f^(prime)(x)}dx

    01:52

    |

  7. Evaluate int(log(e)x)^(2)dx

    04:27

    |

  8. int(xsin^-1x)/sqrt(1-x^2)dx

    02:00

    |

  9. Evaluate: inttan^(-1)sqrt((1-x)/(1+x))dx

    04:17

    |

  10. Evaluate: intcosxlog(t a n x/2)dx

    03:17

    |

  11. Evaluate: intsin^2(logx)dx

    06:28

    |

  12. Evaluate: inte^x(1+tanx+tan^2x)dx

    00:58

    |

  13. Evaluate: int(e^x(2-x^2)dx)/((1-x)sqrt(1-x^2))

    02:24

    |

  14. Evaluate int((log x-1)/(1+(logx)^(2)))^(2)dx

    03:03

    |

  15. Evaluate int sqrt(x^(2)+2x+5)dx

    03:27

    |

Home
Profile
|