Home
Class 12
MATHS
int(sin^8x-cos^8x)/(1-2sin^2xcos^2x)dx=...

`int(sin^8x-cos^8x)/(1-2sin^2xcos^2x)dx=`

A

`(1)/(2)sin2x+C`

B

`-(1)/(2)sin2x+C`

C

`-(1)/(2)sinx+C`

D

`-sin^(2)x+C`

Text Solution

Verified by Experts

The correct Answer is:
B

`int(sin^(8)x-cos^(8)x)/(1-2sin^(2)xcos^(2)x)dx=int((sin^(2)x-cos^(2)x)(sin^(4)x+cos^(4)x))/(1-2sin^(2)xcos^(2)x)`
`=int-cos2xdx=-(1)/(2)sin2x+C`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Multiple)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Comprehension)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 7.9|15 Videos
  • HYPERBOLA

    CENGAGE|Exercise JEE Advanced Previous Year|14 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

If int(sin^(8)x-cos^(8)x)/(1-2sin^(2)xcos^(2)x)dx=A sin 2x+B, then A =

Find int(sin^3x+cos^3x)/(sin^2xcos^2x)dx .

int(sin^(8)x-cos^(8)x)/(1-2sin^(2)x cos^(2)x)dx=

If int(sin^(8)x-cos^(8)x)/(1-2sin^(2)x cos^(2)x)dx=a sin2x+C then a=

Evaluate: int(sin^(8)x-cos^(8)x)/(1-2sin^(2)x+cos^(2)x)dx

int(sin2xcos2x)/(sin^(4)2x+cos^(4)2x)dx=

Integrate the functions (sin^(8)-cos^(8)x)/(1-2sin^(2)x cos^(2)x)

int(sin^(2)x-cos^(2)x)/(sin^(2)xcos^(2)x)dx=

int(cos2x)/(sin^(2)xcos^(2)x)dx=