Home
Class 12
MATHS
Let us consider the equation cos^4x/a+si...

Let us consider the equation `cos^4x/a+sin^4x/b=1/(a+b),x in[0,pi/2],a,bgt0`
the value of `sin^8x/b^3+cos^8x/a^3` is

A

`sin^4x/b=cos^4x/a`

B

`sinx/a=cosx/b`

C

`sin^4x/b^2=cos^4x/a^2`

D

`sin^2x/a=cos^2x/b`

Text Solution

Verified by Experts

The correct Answer is:
C

We have, `cos^4x/a+sin^4x/b=1/(a+b)=(cos^2x+sin^2x)/(a+b)`
`rArr cos^2x(cos^2x/a-1/(a+b))=sin^2x(1/(a+b)-sin^2x/b)`
`rArrcos^2x((bcos^2x-asin^2x)/(a(a+b)))=sin^2x((bcos^2x-asin^2x)/(b(a+b)))`
`rArrcos^2x/a=sin^2x/b`
`rArr(1-sin^2x)/a=sin^2x/b`
`rArr sin^2x=b/(a+b)and cos^2x=a/(a+b)`
`:. sin^8x/b^3+cos^8x/a^3=b^3/(b^3(a+b)^4)+a^4/(a^3(a+b)^4)=1/((a+b)^3)`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Matrix)|3 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Numerical)|11 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise (Multiple)|17 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

Number of roots of the equation (3+cos x)^(2)=4-2sin^(8)x,x in[0,5 pi] are

Consider the equation,sin^(4)x-cos^(2)x sin x+2sin a^(2)x+sin x=0in0<=x<=3 pi

Knowledge Check

  • Let us consider the equation cos^4x/a+sin^4x/b=1/(a+b),x in[0,pi/2],a,bgt0 The value of sin^2x in terms of a and b is

    A
    `sqrt(ab)`
    B
    `b/(a+b)`
    C
    `(b^2-a^2)/(a^2+b^2)`
    D
    `(a^2+b^2)/(b^2-a^2)`
  • The number of solutions of the equation (3+cos x)^(2)=4-2sin^(8)x" in "[0, 9pi) is equal to

    A
    4
    B
    5
    C
    6
    D
    7
  • If "cos" x +"cos"^2 x -1, then the value of "sin"^12 x+3 "sin"^8x+"sin" ^6x-1 is

    A
    2
    B
    1
    C
    -1
    D
    0
  • Similar Questions

    Explore conceptually related problems

    If 0

    If sin^(3)x cos3x+cos^(3)x sin3x=(3)/(8), then the value of 8sin4x is _(-)

    Let the solution set of the inequation n(sin x-(1)/(2))(sin x-(1)/(sqrt(2)))<=0in[(pi)/(2),pi] be A and let solution set of equation sin^(-1)(3x-4x^(3))=3sin^(-1)x be B. Now define a function f:A rarr B.

    If ( sin^(4) A)/( a ) + ( cos ^(4) A )/( b) = ( 1)/( a+b) ,then the value of ( sin ^(8) A )/( a^(3)) + ( cos ^(8) A )/( b^(3)) is equal to

    The number of distinct real roots of the equation, |(cos x, sin x , sin x ),(sin x , cos x , sin x),(sinx , sin x , cos x )|=0 in the interval [-pi/4,pi/4] is :