Home
Class 11
CHEMISTRY
The energy needed for Li((g))to Li((g))^...

The energy needed for `Li_((g))to Li_((g))^(+3)+3e^(-)` is `1.96xx10^(4)"KJ mole"^(-1)`. If the first ionisation energy of Li is 520 KJ `"mole"^(-1)` calculate second ionisation energy for Li. Given `IE_(1)` for `H = 2.18xx10^(-18)"J atom"^(-1)`

A

`5270 "KJ mole"^(-1)`

B

`3210"KJ mole"^(-1)`

C

`7270 "KJ mole"^(-1)`

D

`9290"KJ mole"^(-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the second ionization energy (IE2) of lithium (Li) using the given data. The total energy required to convert lithium (Li) to lithium ion with a +3 charge (Li³⁺) is provided, along with the first ionization energy (IE1) of lithium. ### Step-by-Step Solution: 1. **Understand Ionization Energies**: - The first ionization energy (IE1) is the energy required to remove the first electron from a neutral atom. - The second ionization energy (IE2) is the energy required to remove the second electron from a singly charged ion (Li⁺). - The third ionization energy (IE3) is the energy required to remove the third electron from a doubly charged ion (Li²⁺). 2. **Write the Ionization Energy Equations**: - The total energy required to convert Li to Li³⁺ can be expressed as: \[ \text{Total Energy} = \text{IE1} + \text{IE2} + \text{IE3} \] - Given: - Total Energy = \(1.96 \times 10^4 \, \text{kJ/mol}\) - IE1 = \(520 \, \text{kJ/mol}\) 3. **Calculate IE3**: - For the third ionization energy (IE3), since Li²⁺ behaves like a hydrogen-like atom, we can calculate it using the formula for hydrogen-like atoms: \[ \text{IE3} = 13.6 \times Z^2 \times \frac{1}{n^2} \, \text{eV} \] where \(Z\) is the atomic number and \(n\) is the principal quantum number. For Li²⁺, \(Z = 3\) and \(n = 1\): \[ \text{IE3} = 13.6 \times 3^2 \times \frac{1}{1^2} = 13.6 \times 9 = 122.4 \, \text{eV} \] - Convert eV to kJ/mol: \[ \text{IE3} = 122.4 \, \text{eV} \times 96.49 \, \text{kJ/mol/eV} = 11810.376 \, \text{kJ/mol} \] 4. **Substitute Values into the Total Energy Equation**: - Now, we can substitute the known values into the total energy equation: \[ 1.96 \times 10^4 = 520 + \text{IE2} + 11810.376 \] 5. **Solve for IE2**: - Rearranging the equation to solve for IE2: \[ \text{IE2} = 1.96 \times 10^4 - 520 - 11810.376 \] - Calculate: \[ \text{IE2} = 19600 - 520 - 11810.376 = 7270.624 \, \text{kJ/mol} \] - Rounding off gives: \[ \text{IE2} \approx 7270 \, \text{kJ/mol} \] ### Final Answer: The second ionization energy (IE2) for lithium is approximately **7270 kJ/mol**.

To solve the problem, we need to find the second ionization energy (IE2) of lithium (Li) using the given data. The total energy required to convert lithium (Li) to lithium ion with a +3 charge (Li³⁺) is provided, along with the first ionization energy (IE1) of lithium. ### Step-by-Step Solution: 1. **Understand Ionization Energies**: - The first ionization energy (IE1) is the energy required to remove the first electron from a neutral atom. - The second ionization energy (IE2) is the energy required to remove the second electron from a singly charged ion (Li⁺). - The third ionization energy (IE3) is the energy required to remove the third electron from a doubly charged ion (Li²⁺). ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • CLASSIFICATION OF ELEMENTS AND PERIODICITY

    NARAYNA|Exercise EXERCISE - 3|17 Videos
  • CLASSIFICATION OF ELEMENTS AND PERIODICITY

    NARAYNA|Exercise EXERCISE - 4|17 Videos
  • CLASSIFICATION OF ELEMENTS AND PERIODICITY

    NARAYNA|Exercise EXERCISE - 2 (C.W)|41 Videos
  • CHEMICAL EQUILIBRIUM

    NARAYNA|Exercise Exercise -IV|33 Videos
  • ENVIRONMENTAL CHEMISTRY

    NARAYNA|Exercise EXCERCISE - IV (NCERT EXEMPLAR QUESTIONS)|7 Videos

Similar Questions

Explore conceptually related problems

The energy needed for Li_(g) rarr Li_(g)^(3+) + 3e is 1. 96 xx 10^4 kJ mol ^(-1) . If the first ionisation energy of Li is 520 k J mol^(-1) . Calcuate the second ionisation energy of Li . (Given : IE_1 for H = 2 . 2. 18 xx 10^(-18) k J "atom"^(-1) ).

The energy needed for the following process is Li(g) to Li^(3+) (g)+3e^(-) If the first ionization energy of lithium is 520" kJ mol"^(-1) , calculate the second ionization energy of lithium, that is the energy required for the process. Li^(+) (g) to Li^(2+) (g)+e^(-)

Knowledge Check

  • The Energy needed for Li(g) to Li^(3+) (g) + 3e^- , is 19600 kJ "mole"^(-1) . The first ionisation energy of Li (g) = 520 kJ "mole"^(-1) . Calculate IE_2 For Li(g) (ionisation energy of H = 13.6 eV)

    A
    75.3 eV/species
    B
    25.30 eV/species
    C
    30.45 eV/species
    D
    62.40 eV/species
  • The ionisation energy of H is 13.6 eV . Calculate the ionization energy of Li^(2+) ions.

    A
    `54.4 eV`
    B
    `122.4eV`
    C
    `244.8eV`
    D
    `108.8eV`
  • The first ionization energy of hydrogen is 2.179xx10^(-18) J The second ionization energy of helium atom will be

    A
    `8.716xx10^(-18)J`
    B
    `4.358xx10^(-18)J`
    C
    `5.45xx10^(-17)` J
    D
    `1.09xx10^(-18) J`
  • Similar Questions

    Explore conceptually related problems

    The ionization energy of He^(+) is 8.72 xx 10^(-18)J "atom"^(-1) . Calculate the energy of first stationary state of Li^(2+) .

    Calculate the ionisation energy of Li^(2+) atom in ground state.

    The ionisation energy of H-atom is 13.6 ev. What will be the ionisation energy of He^(+) and Li^(2+ ions?

    The ionisation energy of H atom is 13.6 eV The inoisation energy of Li^(2+) law will be

    Ionisation energy of He^(+) is 19.6xx10^(-18)J"atom"^(-1) . The energy of the first stationary state (n = 1) of Li^(2+) is