Home
Class 12
MATHS
If c ne 0 and the equation (p)/(2x)=(a)/...

If `c ne 0` and the equation `(p)/(2x)=(a)/(x+c)+(b)/(x-c)` has two equal roots, then `p` can be

A

`(sqrt(a)-sqrt(b))^(2)`

B

`(sqrt(a)+sqrt(b))^(2)`

C

`a+b`

D

`a-b`

Text Solution

Verified by Experts

The correct Answer is:
A, B

`(a,b)` We have `(p)/(2x)=((a+b)x+c(b-a))/(x^(2)-c^(2))`
`implies p(x^(2)-c^(2))=2(a+b)x^(2)-2c(a-b)x`
`implies (2a+2b-p)x^(2)-2c(a-b)x+pc^(2)=0`
Since roots are equal
`D=c^(2)(a-b)^(2)-pc^(2)(2a+2b-p)=0`
`implies (a-b)^(2)-2p(a+b)+p^(2)=0 (:' c^(2) ne 0)`
`implies [p-(a+b)]^(2)=(a+b)^(2)-(a-b)^(2)`
`impliesp=a+b+-2sqrt(ab)=(sqrt(a)+-sqrt(b))^(2)`
Promotional Banner

Topper's Solved these Questions

  • THEORY OF EQUATIONS

    CENGAGE|Exercise Comprehension|12 Videos
  • THEORY OF EQUATIONS

    CENGAGE|Exercise Examples|136 Videos
  • THEORY OF EQUATIONS

    CENGAGE|Exercise JEE Advanced Previous Year|9 Videos
  • STRAIGHT LINES

    CENGAGE|Exercise JEE Advanced Previous Year|4 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE|Exercise Question Bank|20 Videos

Similar Questions

Explore conceptually related problems

If c!=0 and the equation p/(2x)=a/(x+c)+b/(x-c) has two equal roots,then p can be (sqrt(a)-sqrt(b))^(2) b.(sqrt(a)+sqrt(b))^(2) c.a+b d.a-b

If a

If a,b,c in R and the quadratic equation x^(2)+(a+b)x+c=0 has no real roots then

If the roots of the equation (x-b)(x-c)+(x-c)(x-a)+(x-a)(x-b)=0 are equal then

If a(b-c)x^(2)+b(c-a)x+c(a-b)=0 has equal root,then a,b,c are in

The roots of the equation (b-c)x^(2)+(c-a)x+(a-b)=0