Home
Class 12
MATHS
Prove that ^n C0^(2n)Cn-^n C1^(2n-2)Cn+^...

Prove that `^n C_0^(2n)C_n-^n C_1^(2n-2)C_n+^n C_2^(2n-4)C_n-=2^ndot`

A

`((n),(m-n))2^(2n-m)` if ` m ge n`

B

`0` if `m lt n`

C

`((n),(m-n))2^(2n+m)` if ` m ge n`

D

`1` if `m lt n`

Text Solution

Verified by Experts

The correct Answer is:
A, B

`(a,b)` The given series can be written as
`S=sum_(r=0)^(n)'^(n)C_(r )^(2n-2)C_(m)(-1)^(r )`
`=sum_(r=0)^(n)'^(n)C_(r )(-1)^(r )xx"coefficient of" x^(m) "in" (1+x)^(2n-2r)`
`="coefficient of" x^(m) "in" sum_(r=0^(n)'^(n)C_(r )(-1)^(r )[(1+x)^(2)]^(n-r)`
`="coefficient of" x^(m) "in" (x^(2)+2x)^(n)`
`="coefficient of" x^(m) "in" x^(n) (x+2)^(n)`
`="coefficient of" x^(m-n) "in" (x+2)^(n)`
`=^(n)C_(m-n)2^(n-(m-n))=((n),(m-n))2^(2n-m)` if `m ge n` and `0` if `m lt n`.
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Comprehension|11 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Single correct Answer|62 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|20 Videos
  • BINOMIAL THEORM

    CENGAGE|Exercise Question Bank|31 Videos

Similar Questions

Explore conceptually related problems

Prove that ^nC_(0)^(2n)C_(n)-^(n)C_(1)^(2n-2)C_(n)+^(n)C_(2)^(2n-4)C_(n)-...=2^(n)

Prove that ^nC_(0)^(2n)C_(n)-^(n)C_(1)^(2n-1)C_(n)+^(n)C_(2)xx^(2n-2)C_(n)++(-1)^(n)sim nC_(n)^(n)C_(n)=1

Prove that ^nC_(0)^(n)C_(0)-^(n+1)C_(1)^(n)C_(1)+^(n+2)C_(2)^(n)C_(2)-...=(-1)^(n)

Prove that : ""^(n)C_(0).""^(2n)C_(n)-""^(n)C_(1).""^(2n-2)Cn_(n)+""^(n)C_(2).""^(2n-4)Cn_(n)+......=2^n

Prove that sum_(r=0)^(2n)(.^(2n)C_(r))^(2)=n^(4n)C_(2n)

Prove that (^(2n)C_0)^2+(^(2n)C_1)^2+(^(2n)C_2)^2-+(^(2n)C_(2n))^2-(-1)^n^(2n)C_ndot

Prove that C_(0)^(2)+C_(1)^(2)+...C_(n)^(2)=(2n!)/(n!n!)

Prove that (""^(2n)C_(0))^(2)-(""^(2n)C_(1))^(2)+(""^(2n)C_(2))^(2)-…+(""^(2n)C_(2n))^(2)=(-1)^(n)*""^(2n)C_(n) .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0)^(2) - C_(1)^(2) + C_(2)^(2) -…+ (-1)^(n) *C_(n)^(2)= 0 or (-1)^(n//2) * (n!)/((n//2)! (n//2)!) , according as n is odd or even Also , evaluate C_(0)^(2) + C_(1)^(2) + C_(2)^(2) - ...+ (-1)^(n) *C_(n)^(2) for n = 10 and n= 11 .