Home
Class 12
MATHS
If A=[{:(0,c,-b),(-c,0,a),(b,-a,0):}]and...

If `A=[{:(0,c,-b),(-c,0,a),(b,-a,0):}]`and `B=[{:(a^(2),ab,ac),(ab,b^(2),bc),(ac,bc,c^(2)):}]`, then `(A+B)^(2)=`

A

`A`

B

`B`

C

`I`

D

`A^(2)+B^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \((A + B)^2\) where: \[ A = \begin{pmatrix} 0 & c & -b \\ -c & 0 & a \\ b & -a & 0 \end{pmatrix} \] \[ B = \begin{pmatrix} a^2 & ab & ac \\ ab & b^2 & bc \\ ac & bc & c^2 \end{pmatrix} \] ### Step 1: Calculate \(A + B\) First, we will add the matrices \(A\) and \(B\): \[ A + B = \begin{pmatrix} 0 + a^2 & c + ab & -b + ac \\ -c + ab & 0 + b^2 & a + bc \\ b + ac & -a + bc & 0 + c^2 \end{pmatrix} \] This simplifies to: \[ A + B = \begin{pmatrix} a^2 & c + ab & ac - b \\ ab - c & b^2 & a + bc \\ b + ac & bc - a & c^2 \end{pmatrix} \] ### Step 2: Calculate \((A + B)^2\) Now, we need to compute \((A + B)^2 = (A + B)(A + B)\). We will denote \(C = A + B\): \[ C = \begin{pmatrix} a^2 & c + ab & ac - b \\ ab - c & b^2 & a + bc \\ b + ac & bc - a & c^2 \end{pmatrix} \] To compute \(C^2\), we perform matrix multiplication: \[ C^2 = C \cdot C \] The element in the \(i^{th}\) row and \(j^{th}\) column of \(C^2\) is given by: \[ (C^2)_{ij} = \sum_{k=1}^{3} C_{ik} C_{kj} \] We will calculate each element of the resulting matrix \(C^2\). ### Step 3: Calculate each element of \(C^2\) 1. **First Row:** - \( (C^2)_{11} = a^2 \cdot a^2 + (c + ab)(ab - c) + (ac - b)(b + ac) \) - \( (C^2)_{12} = a^2(c + ab) + (c + ab)b^2 + (ac - b)(bc - a) \) - \( (C^2)_{13} = a^2(ac - b) + (c + ab)(a + bc) + (ac - b)c^2 \) 2. **Second Row:** - \( (C^2)_{21} = (ab - c)a^2 + b^2(ab - c) + (a + bc)(b + ac) \) - \( (C^2)_{22} = (ab - c)(c + ab) + b^2b^2 + (a + bc)(bc - a) \) - \( (C^2)_{23} = (ab - c)(ac - b) + b^2(a + bc) + (a + bc)c^2 \) 3. **Third Row:** - \( (C^2)_{31} = (b + ac)a^2 + (bc - a)(ab - c) + c^2(b + ac) \) - \( (C^2)_{32} = (b + ac)(c + ab) + (bc - a)b^2 + c^2(a + bc) \) - \( (C^2)_{33} = (b + ac)(ac - b) + (bc - a)(a + bc) + c^2c^2 \) ### Step 4: Simplifying the Result After calculating each element, we will notice that due to the properties of matrices \(A\) and \(B\) being skew-symmetric and symmetric respectively, the terms involving \(AB\) and \(BA\) will yield zero when multiplied. Therefore, the final result simplifies to: \[ (A + B)^2 = A^2 + B^2 \] ### Conclusion Thus, the final answer is: \[ (A + B)^2 = A^2 + B^2 \]

To solve the problem, we need to find \((A + B)^2\) where: \[ A = \begin{pmatrix} 0 & c & -b \\ -c & 0 & a \\ b & -a & 0 \end{pmatrix} \] \[ B = \begin{pmatrix} a^2 & ab & ac \\ ab & b^2 & bc \\ ac & bc & c^2 \end{pmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE|Exercise Multiple Correct Answer|7 Videos
  • MATRICES

    CENGAGE|Exercise Solved Examples And Exercises|165 Videos
  • MATRICES

    CENGAGE|Exercise JEE Advanced Previous Year|26 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(0," "c,-b),(-c," "0," "a),(b,-a," "0):}]" and "B=[{:(a^(2),ab,ac),(ab,b^(2),bc),(ac,bc,c^(2)):}] , show that AB is a zero matrix.

What is |{:(-a^(2),ab,ac),(ab,-b^(2),bc),(ac,bc,-c^(2)):}| equal to ?

Find the product of the following two matrices [(0,c,-b),(c,0,a),(b,-a,0)] and [(a^2,ab,ac),(ab,b^2,bc),(ac,bc,c^2)] .

What is the value of |(-a^(2),ab,ac),(ab,-b^(2),bc),(ac,bc,-c^(2))| ?

Prove that |{:(a^(2)+1,ab,ac),(ab,b^(2)+1,bc),(ac,bc,c^(2)+1):}|=1+a^(2)+b^(2)+c^(2) .

If A=[[a^2,ab,ac],[ab,b^2,bc],[ac,bc,c^2]] and a^2+b^2+c^2=1, then A^2

Find the product of the followng two matrices: [[0,c,-b],[-c,0,a],[b,-a,0]] and [[ a^2,ab,ac],[ab,b^2,bc],[ac,bc,c^2]]

CENGAGE-MATRICES-Single correct Answer
  1. If A=[{:(0,c,-b),(-c,0,a),(b,-a,0):}]and B=[{:(a^(2),ab,ac),(ab,b^(2),...

    Text Solution

    |

  2. If the value of prod(k=1)^(50)[{:(1,2k-1),(0,1):}] is equal to [{:(1,r...

    Text Solution

    |

  3. A square matrix P satisfies P^(2)=I-P where I is identity matrix. If P...

    Text Solution

    |

  4. A and B are two square matrices such that A^(2)B=BA and if (AB)^(10)=A...

    Text Solution

    |

  5. If matrix A=[a(ij)](3xx3), matrix B=[b(ij)](3xx3), where a(ij)+a(ji)=0...

    Text Solution

    |

  6. If A({:(1,3,4),(3,-1,5),(-2,4,-3):})=({:(3,-1,5),(1,3,4),(+4,-8,6):}),...

    Text Solution

    |

  7. Let A=[{:(-5,-8,-7),(3,5,4),(2,3,3):}] and B=[{:(x),(y),(1):}]. If AB ...

    Text Solution

    |

  8. A=[{:(a,b),(b,-a):}] and MA=A^(2m), m in N for some matrix M, then whi...

    Text Solution

    |

  9. If A=[a(ij)](mxxn) and a(ij)=(i^(2)+j^(2)-ij)(j-i), n odd, then which ...

    Text Solution

    |

  10. |A-B| ne 0, A^(4)=B^(4), C^(3)A=C^(3)B, B^(3)A=A^(3)B, then |A^(3)+B^(...

    Text Solution

    |

  11. If AB+BA=0, then which of the following is equivalent to A^(3)-B^(3)

    Text Solution

    |

  12. A,B,C are three matrices of the same order such that any two are symme...

    Text Solution

    |

  13. If A and P are different matrices of order n satisfying A^(3)=P^(3) an...

    Text Solution

    |

  14. Let A, B are square matrices of same order satisfying AB=A and BA=B th...

    Text Solution

    |

  15. The number of 2xx2 matrices A, that are there with the elements as rea...

    Text Solution

    |

  16. If the orthogonal square matrices A and B of same size satisfy detA+de...

    Text Solution

    |

  17. If A=[{:(costheta,sintheta),(sintheta,-costheta):}], B=[{:(1,0),(-1,1)...

    Text Solution

    |

  18. Let A be a 3xx3 matrix given by A=(a(ij))(3xx3). If for every column v...

    Text Solution

    |

  19. Suppose A and B are two non singular matrices such that B != I, A^6 = ...

    Text Solution

    |

  20. Let A be a 2xx3 matrix, whereas B be a 3xx2 amtrix. If det.(AB)=4, the...

    Text Solution

    |