Home
Class 12
MATHS
If A=[{:(0,c,-b),(-c,0,a),(b,-a,0):}]and...

If `A=[{:(0,c,-b),(-c,0,a),(b,-a,0):}]`and `B=[{:(a^(2),ab,ac),(ab,b^(2),bc),(ac,bc,c^(2)):}]`, then `(A+B)^(2)=`

A

`A`

B

`B`

C

`I`

D

`A^(2)+B^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \((A + B)^2\) where: \[ A = \begin{pmatrix} 0 & c & -b \\ -c & 0 & a \\ b & -a & 0 \end{pmatrix} \] \[ B = \begin{pmatrix} a^2 & ab & ac \\ ab & b^2 & bc \\ ac & bc & c^2 \end{pmatrix} \] ### Step 1: Calculate \(A + B\) First, we will add the matrices \(A\) and \(B\): \[ A + B = \begin{pmatrix} 0 + a^2 & c + ab & -b + ac \\ -c + ab & 0 + b^2 & a + bc \\ b + ac & -a + bc & 0 + c^2 \end{pmatrix} \] This simplifies to: \[ A + B = \begin{pmatrix} a^2 & c + ab & ac - b \\ ab - c & b^2 & a + bc \\ b + ac & bc - a & c^2 \end{pmatrix} \] ### Step 2: Calculate \((A + B)^2\) Now, we need to compute \((A + B)^2 = (A + B)(A + B)\). We will denote \(C = A + B\): \[ C = \begin{pmatrix} a^2 & c + ab & ac - b \\ ab - c & b^2 & a + bc \\ b + ac & bc - a & c^2 \end{pmatrix} \] To compute \(C^2\), we perform matrix multiplication: \[ C^2 = C \cdot C \] The element in the \(i^{th}\) row and \(j^{th}\) column of \(C^2\) is given by: \[ (C^2)_{ij} = \sum_{k=1}^{3} C_{ik} C_{kj} \] We will calculate each element of the resulting matrix \(C^2\). ### Step 3: Calculate each element of \(C^2\) 1. **First Row:** - \( (C^2)_{11} = a^2 \cdot a^2 + (c + ab)(ab - c) + (ac - b)(b + ac) \) - \( (C^2)_{12} = a^2(c + ab) + (c + ab)b^2 + (ac - b)(bc - a) \) - \( (C^2)_{13} = a^2(ac - b) + (c + ab)(a + bc) + (ac - b)c^2 \) 2. **Second Row:** - \( (C^2)_{21} = (ab - c)a^2 + b^2(ab - c) + (a + bc)(b + ac) \) - \( (C^2)_{22} = (ab - c)(c + ab) + b^2b^2 + (a + bc)(bc - a) \) - \( (C^2)_{23} = (ab - c)(ac - b) + b^2(a + bc) + (a + bc)c^2 \) 3. **Third Row:** - \( (C^2)_{31} = (b + ac)a^2 + (bc - a)(ab - c) + c^2(b + ac) \) - \( (C^2)_{32} = (b + ac)(c + ab) + (bc - a)b^2 + c^2(a + bc) \) - \( (C^2)_{33} = (b + ac)(ac - b) + (bc - a)(a + bc) + c^2c^2 \) ### Step 4: Simplifying the Result After calculating each element, we will notice that due to the properties of matrices \(A\) and \(B\) being skew-symmetric and symmetric respectively, the terms involving \(AB\) and \(BA\) will yield zero when multiplied. Therefore, the final result simplifies to: \[ (A + B)^2 = A^2 + B^2 \] ### Conclusion Thus, the final answer is: \[ (A + B)^2 = A^2 + B^2 \]

To solve the problem, we need to find \((A + B)^2\) where: \[ A = \begin{pmatrix} 0 & c & -b \\ -c & 0 & a \\ b & -a & 0 \end{pmatrix} \] \[ B = \begin{pmatrix} a^2 & ab & ac \\ ab & b^2 & bc \\ ac & bc & c^2 \end{pmatrix} ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATRICES

    CENGAGE|Exercise Multiple Correct Answer|7 Videos
  • MATRICES

    CENGAGE|Exercise Solved Examples And Exercises|165 Videos
  • MATRICES

    CENGAGE|Exercise JEE Advanced Previous Year|26 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(0," "c,-b),(-c," "0," "a),(b,-a," "0):}]" and "B=[{:(a^(2),ab,ac),(ab,b^(2),bc),(ac,bc,c^(2)):}] , show that AB is a zero matrix.

Find the product of the following two matrices [(0,c,-b),(c,0,a),(b,-a,0)] and [(a^2,ab,ac),(ab,b^2,bc),(ac,bc,c^2)] .

Knowledge Check

  • If A=[(0,c,-b),(-c,0,a),(b,-a,0)],B=[(a^(2),ab,ac),(ab,b^(2),bc),(ac,bc,c^(2))] then AB=

    A
    A
    B
    B
    C
    It is not necessary that either A=O or B=O
    D
    O
  • If A and B are matrices given below: A=[(0,c,-b),(-c,0,a),(b,-a,0)] and B=[(a^(2),ab,ac),(ab,b^(2),bc),(ac,bc,c^(2))] then AB is a

    A
    A
    B
    O
    C
    on odd multiple of `pi//2`
    D
    I
  • What is |{:(-a^(2),ab,ac),(ab,-b^(2),bc),(ac,bc,-c^(2)):}| equal to ?

    A
    4 abc
    B
    `4a^(2)bc`
    C
    `4a^(2)b^(2)c^(2)`
    D
    `-4a^(2)b^(2)c^(2)`
  • Similar Questions

    Explore conceptually related problems

    Prove that |{:(a^(2)+1,ab,ac),(ab,b^(2)+1,bc),(ac,bc,c^(2)+1):}|=1+a^(2)+b^(2)+c^(2) .

    If A=[[a^2,ab,ac],[ab,b^2,bc],[ac,bc,c^2]] and a^2+b^2+c^2=1, then A^2

    Find the product of the followng two matrices: [[0,c,-b],[-c,0,a],[b,-a,0]] and [[ a^2,ab,ac],[ab,b^2,bc],[ac,bc,c^2]]

    If |(-a^2,ab,ac),(ab,-b^2,bc),(ac,bc,-c^2)|=ka^2b^2c^2 , then k =

    What is the value of |(-a^(2),ab,ac),(ab,-b^(2),bc),(ac,bc,-c^(2))| ?