Home
Class 12
MATHS
If A=[{:(1,0,0),(1,0,1),(0,1,0):}], then...

If `A=[{:(1,0,0),(1,0,1),(0,1,0):}]`, then

A

`A^(3)-A^(2)=A-I`

B

`Det(A^(2010)-I)=0`

C

`A^(50)=[{:(1,0,0),(25,1,0),(25,0,1):}]`

D

`A^(50)=[{:(1,1,0),(25,1,0),(25,0,1):}]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the matrix \( A \) given by: \[ A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \] We will find \( A^2 \), \( A^3 \), and then compute \( A^3 - A^2 \). ### Step 1: Calculate \( A^2 \) To calculate \( A^2 \), we multiply \( A \) by itself: \[ A^2 = A \cdot A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \] Calculating each element of \( A^2 \): - First row: - \( (1 \cdot 1 + 0 \cdot 1 + 0 \cdot 0) = 1 \) - \( (1 \cdot 0 + 0 \cdot 0 + 0 \cdot 1) = 0 \) - \( (1 \cdot 0 + 0 \cdot 1 + 0 \cdot 0) = 0 \) - Second row: - \( (1 \cdot 1 + 0 \cdot 1 + 1 \cdot 0) = 1 \) - \( (1 \cdot 0 + 0 \cdot 0 + 1 \cdot 1) = 1 \) - \( (1 \cdot 0 + 0 \cdot 1 + 1 \cdot 0) = 0 \) - Third row: - \( (0 \cdot 1 + 1 \cdot 1 + 0 \cdot 0) = 1 \) - \( (0 \cdot 0 + 1 \cdot 0 + 0 \cdot 1) = 0 \) - \( (0 \cdot 0 + 1 \cdot 1 + 0 \cdot 0) = 1 \) Thus, we find: \[ A^2 = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} \] ### Step 2: Calculate \( A^3 \) Next, we compute \( A^3 \) by multiplying \( A^2 \) by \( A \): \[ A^3 = A^2 \cdot A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \] Calculating each element of \( A^3 \): - First row: - \( (1 \cdot 1 + 0 \cdot 1 + 0 \cdot 0) = 1 \) - \( (1 \cdot 0 + 0 \cdot 0 + 0 \cdot 1) = 0 \) - \( (1 \cdot 0 + 0 \cdot 1 + 0 \cdot 0) = 0 \) - Second row: - \( (1 \cdot 1 + 1 \cdot 1 + 1 \cdot 0) = 2 \) - \( (1 \cdot 0 + 1 \cdot 0 + 1 \cdot 1) = 1 \) - \( (1 \cdot 0 + 1 \cdot 1 + 1 \cdot 0) = 1 \) - Third row: - \( (1 \cdot 1 + 0 \cdot 1 + 1 \cdot 0) = 1 \) - \( (1 \cdot 0 + 0 \cdot 0 + 1 \cdot 1) = 1 \) - \( (1 \cdot 0 + 0 \cdot 1 + 1 \cdot 0) = 0 \) Thus, we find: \[ A^3 = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix} \] ### Step 3: Calculate \( A^3 - A^2 \) Now, we compute \( A^3 - A^2 \): \[ A^3 - A^2 = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix} - \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} \] Calculating each element: - First row: - \( 1 - 1 = 0 \) - \( 0 - 0 = 0 \) - \( 0 - 0 = 0 \) - Second row: - \( 2 - 1 = 1 \) - \( 1 - 1 = 0 \) - \( 1 - 1 = 0 \) - Third row: - \( 1 - 1 = 0 \) - \( 1 - 0 = 1 \) - \( 0 - 1 = -1 \) Thus, we find: \[ A^3 - A^2 = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & -1 \end{pmatrix} \] ### Conclusion The final result for \( A^3 - A^2 \) is: \[ \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & -1 \end{pmatrix} \]

To solve the problem, we need to analyze the matrix \( A \) given by: \[ A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATRICES

    CENGAGE|Exercise Solved Examples And Exercises|165 Videos
  • MATRICES

    CENGAGE|Exercise Single correct Answer|34 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

If A=[(1,0,1),(0,0,0),(1,0,1)] , then find |A^(2)| .

Let A = ({:(1,0,0),(0,1,1),(1,0,0):}) . Then A^(2025) - A^(2020) is equal to :

Knowledge Check

  • If A = [{:( 0,0,0),( 1,0,0),(0,1,0):}] ,then

    A
    `A^(2) =A `
    B
    ` A^(2) = 0`
    C
    ` A^(2)= I`
    D
    `A^(3) = O`
  • If A={:[(0,1,0),(1,0,0),(0,0,1)]:}," then "A^(-1)=

    A
    A
    B
    `-A`
    C
    `{:[(1,0,0),(0,1,0),(0,0,1)]:}`
    D
    `{:[(1,0,0),(1,0,0),(0,1,0)]:}`
  • If A=[(1,-1,0),(1,0,0),(0,0,-1)] , then A^(-1) is

    A
    `A^(T)`
    B
    `A^(2)`
    C
    A
    D
    I
  • Similar Questions

    Explore conceptually related problems

    Let a be a 3xx3 matric such that [(1,2,3),(0,2,3),(0,1,1)]=[(0,0,1),(1,0,0),(0,1,0)] , then find A^(-1) .

    If A^(-1)=[{:(,1,-1,0),(,0,-2,1),(,0,0,-1):}] then

    Let A=[(1,0,0),(1,0,1),(0,1,0)] satisfies A^(n)=A^(n-1)+A^(2)-I for n ge 3 . And trace of a square matrix X is equal to the sum of elements in its proncipal diagonal. Further consider a matrix underset(3xx3)(uu) with its column as uu_(1), uu_(2), uu_(3) such that A^(50) uu_(1)=[(1),(25),(25)], A^(50) uu_(2)=[(0),(1),(0)], A^(50) uu_(3)=[(0),(0),(1)] Then answer the following question : Trace of A^(50) equals

    Let A=[(1,0,0),(1,0,1),(0,1,0)] satisfies A^(n)=A^(n-1)+A^(2)-I for n ge 3 . And trace of a square matrix X is equal to the sum of elements in its proncipal diagonal. Further consider a matrix underset(3xx3)(uu) with its column as uu_(1), uu_(2), uu_(3) such that A^(50) uu_(1)=[(1),(25),(25)], A^(50) uu_(2)=[(0),(1),(0)], A^(50) uu_(3)=[(0),(0),(1)] Then answer the following question : The values of |A^(50| equals

    Let A=[(1,0,0),(1,0,1),(0,1,0)] satisfies A^(n)=A^(n-2)+A^(2)-I for n ge 3 . And trace of a square matrix X is equal to the sum of elements in its proncipal diagonal. Further consider a matrix underset(3xx3)(uu) with its column as uu_(1), uu_(2), uu_(3) such that A^(50) uu_(1)=[(1),(25),(25)], A^(50) uu_(2)=[(0),(1),(0)], A^(50) uu_(3)=[(0),(0),(1)] Then answer the following question : The value of |uu| equals