Home
Class 12
MATHS
A square matrix P satisfies P^(2)=I-P wh...

A square matrix `P` satisfies `P^(2)=I-P` where `I` is identity matrix. If `P^(n)=5I-8P`, then `n` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation involving the square matrix \( P \): 1. **Given**: \( P^2 = I - P \) We can rearrange this to express \( P^2 \) in terms of \( P \) and \( I \). 2. **Step 1**: Find \( P^3 \) To find \( P^3 \), we multiply both sides of the equation for \( P^2 \) by \( P \): \[ P^3 = P \cdot P^2 = P(I - P) = P - P^2 \] Now substitute \( P^2 \) from the original equation: \[ P^3 = P - (I - P) = P - I + P = 2P - I \] 3. **Step 2**: Find \( P^4 \) Next, we find \( P^4 \) by multiplying \( P^3 \) by \( P \): \[ P^4 = P \cdot P^3 = P(2P - I) = 2P^2 - P \] Substitute \( P^2 \) again: \[ P^4 = 2(I - P) - P = 2I - 2P - P = 2I - 3P \] 4. **Step 3**: Find \( P^5 \) Now, we find \( P^5 \): \[ P^5 = P \cdot P^4 = P(2I - 3P) = 2P - 3P^2 \] Substitute \( P^2 \): \[ P^5 = 2P - 3(I - P) = 2P - 3I + 3P = 5P - 3I \] 5. **Step 4**: Find \( P^6 \) Finally, we find \( P^6 \): \[ P^6 = P \cdot P^5 = P(5P - 3I) = 5P^2 - 3P \] Substitute \( P^2 \): \[ P^6 = 5(I - P) - 3P = 5I - 5P - 3P = 5I - 8P \] 6. **Conclusion**: We have found that \( P^6 = 5I - 8P \). Since we are given that \( P^n = 5I - 8P \), we can conclude that: \[ n = 6 \] Thus, the value of \( n \) is \( \boxed{6} \).

To solve the problem, we start with the given equation involving the square matrix \( P \): 1. **Given**: \( P^2 = I - P \) We can rearrange this to express \( P^2 \) in terms of \( P \) and \( I \). 2. **Step 1**: Find \( P^3 \) ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE|Exercise Multiple Correct Answer|7 Videos
  • MATRICES

    CENGAGE|Exercise Solved Examples And Exercises|165 Videos
  • MATRICES

    CENGAGE|Exercise JEE Advanced Previous Year|26 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

A square matrix P satisfies P^(2)=I-p where I is the identity matrix and p^(x)=5I-8p, then x

A square matrix P satisfies P^(2)=I-2P where I is identity matrix.If P^(2)+P^(3)+P^(4)=a^(2)I-b^(2)P then a^2+b^2=

A square matrix P satisfies P^(2)=I-2P where I is identity matrix. If P^(2)+P^(3)+P^(4)=a^(2)I-b^(2)P ,then

A square matrix M of order 3 satisfies M^(2)=I-M , where I is an identity matrix of order 3. If M^(n)=5I-8M , then n is equal to _______.

A square matrix P satisfies P^2=I-2P where I is the identify matrix if P^(2)+P^(3)+P^(4)=a^(2)I-b^(2)P then a,b=

A square matrix A of order 3 satisfies A^(2)=I-2A , where I is an identify matrix of order 3. If A^(n)=29A-12I , then the value of n is equal to

Let A=[("tan"pi/3,"sec" (2pi)/3),(cot (2013 pi/3),cos (2012 pi))] and P be a 2 xx 2 matrix such that P P^(T)=I , where I is an identity matrix of order 2. If Q=PAP^(T) and R=[r_("ij")]_(2xx2)=P^(T) Q^(8) P , then find r_(11) .

Matrix A is such that A^(2)=2A-I , where I is the identify matrix. Then for n ne 2, A^(n)=

CENGAGE-MATRICES-Single correct Answer
  1. If A=[{:(0,c,-b),(-c,0,a),(b,-a,0):}]and B=[{:(a^(2),ab,ac),(ab,b^(2),...

    Text Solution

    |

  2. If the value of prod(k=1)^(50)[{:(1,2k-1),(0,1):}] is equal to [{:(1,r...

    Text Solution

    |

  3. A square matrix P satisfies P^(2)=I-P where I is identity matrix. If P...

    Text Solution

    |

  4. A and B are two square matrices such that A^(2)B=BA and if (AB)^(10)=A...

    Text Solution

    |

  5. If matrix A=[a(ij)](3xx3), matrix B=[b(ij)](3xx3), where a(ij)+a(ji)=0...

    Text Solution

    |

  6. If A({:(1,3,4),(3,-1,5),(-2,4,-3):})=({:(3,-1,5),(1,3,4),(+4,-8,6):}),...

    Text Solution

    |

  7. Let A=[{:(-5,-8,-7),(3,5,4),(2,3,3):}] and B=[{:(x),(y),(1):}]. If AB ...

    Text Solution

    |

  8. A=[{:(a,b),(b,-a):}] and MA=A^(2m), m in N for some matrix M, then whi...

    Text Solution

    |

  9. If A=[a(ij)](mxxn) and a(ij)=(i^(2)+j^(2)-ij)(j-i), n odd, then which ...

    Text Solution

    |

  10. |A-B| ne 0, A^(4)=B^(4), C^(3)A=C^(3)B, B^(3)A=A^(3)B, then |A^(3)+B^(...

    Text Solution

    |

  11. If AB+BA=0, then which of the following is equivalent to A^(3)-B^(3)

    Text Solution

    |

  12. A,B,C are three matrices of the same order such that any two are symme...

    Text Solution

    |

  13. If A and P are different matrices of order n satisfying A^(3)=P^(3) an...

    Text Solution

    |

  14. Let A, B are square matrices of same order satisfying AB=A and BA=B th...

    Text Solution

    |

  15. The number of 2xx2 matrices A, that are there with the elements as rea...

    Text Solution

    |

  16. If the orthogonal square matrices A and B of same size satisfy detA+de...

    Text Solution

    |

  17. If A=[{:(costheta,sintheta),(sintheta,-costheta):}], B=[{:(1,0),(-1,1)...

    Text Solution

    |

  18. Let A be a 3xx3 matrix given by A=(a(ij))(3xx3). If for every column v...

    Text Solution

    |

  19. Suppose A and B are two non singular matrices such that B != I, A^6 = ...

    Text Solution

    |

  20. Let A be a 2xx3 matrix, whereas B be a 3xx2 amtrix. If det.(AB)=4, the...

    Text Solution

    |