Home
Class 11
MATHS
Distance of the points (a,b,c) for the y...

Distance of the points (a,b,c) for the y axis is
(a) `sqrt(b^(2)+c^(2)) (b) sqrt(c^(2)+a^(2)) (c )sqrt(a^(2)+b^(2)) (d) sqrt(a^(2)+b^(2)+c^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the distance of the point \( (a, b, c) \) from the y-axis in three-dimensional space, we can follow these steps: ### Step 1: Understand the Position of the Point The point \( (a, b, c) \) is represented in a 3D coordinate system where: - \( a \) is the x-coordinate, - \( b \) is the y-coordinate, - \( c \) is the z-coordinate. ### Step 2: Identify the Y-Axis In 3D space, the y-axis is represented by points of the form \( (0, y, 0) \). This means that the x-coordinate and z-coordinate are both zero. ### Step 3: Choose a Point on the Y-Axis Let’s choose a point on the y-axis, which can be represented as \( (0, b, 0) \). This point has the same y-coordinate as our point \( (a, b, c) \). ### Step 4: Use the Distance Formula The distance \( D \) between two points \( (x_1, y_1, z_1) \) and \( (x_2, y_2, z_2) \) in 3D space is given by the formula: \[ D = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2} \] ### Step 5: Substitute the Coordinates Substituting the coordinates of our points into the distance formula: - Point 1: \( (a, b, c) \) - Point 2: \( (0, b, 0) \) We have: \[ D = \sqrt{(0 - a)^2 + (b - b)^2 + (0 - c)^2} \] ### Step 6: Simplify the Expression This simplifies to: \[ D = \sqrt{(-a)^2 + 0^2 + (-c)^2} = \sqrt{a^2 + c^2} \] ### Step 7: Conclusion Thus, the distance of the point \( (a, b, c) \) from the y-axis is: \[ D = \sqrt{a^2 + c^2} \] ### Step 8: Identify the Correct Option Looking at the options provided: - (a) \( \sqrt{b^2 + c^2} \) - (b) \( \sqrt{c^2 + a^2} \) - (c) \( \sqrt{a^2 + b^2} \) - (d) \( \sqrt{a^2 + b^2 + c^2} \) The correct answer is option (b) \( \sqrt{c^2 + a^2} \).
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHECK YOUR UNDERSTANDING|10 Videos
  • CONIC SECTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|12 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise CHECK YOUR UNDERSTANDING|10 Videos

Similar Questions

Explore conceptually related problems

The length of the perpendicular drawn from the point P(a,b,c) from z -axis is sqrt(a^(2)+b^(2)) b.sqrt(b^(2)+c^(2)) c.sqrt(a^(2)+c^(2)) d.sqrt(a^(2)+b^(2)+c^(2))

The distance of the point P(a ,\ b ,\ c) from the x-axis is a. sqrt(b^2+c^2) b. sqrt(a^2+c^2) c. sqrt(a^2+b^2) d. none of these

Knowledge Check

  • If : a * cos A-b * sin A=c, "then" : a * sin A +b* cos A= A) sqrt(a^(2)+b^(2)-c^(2)) B) sqrt(a^(2)-b^(2)+c^(2)) C) sqrt(b^(2)+c^(2)-a^(2)) D) sqrt(b^(2)+c^(2)+a^(2))

    A
    `sqrt(a^(2)+b^(2)-c^(2))`
    B
    `sqrt(a^(2)-b^(2)+c^(2))`
    C
    `sqrt(b^(2)+c^(2)-a^(2))`
    D
    `sqrt(b^(2)+c^(2)+a^(2))`
  • If 3a=4b=6c and a+b+c=27sqrt(29) , then sqrt(a^(2)+b^(2)+c^(2)) is

    A
    `3sqrt(29)`
    B
    `81`
    C
    `87`
    D
    `29`
  • Similar Questions

    Explore conceptually related problems

    The shortest distance of the point (a,b,c) from x-axis (A) sqrt(a^2+b^2) (B) sqrt(b^2+c^2) (C) sqrt(c^2+a^2) (D) sqrt(a^2+b^2+c^2)

    (a+c sqrt(b))(2+y sqrt(b))

    lim_(x rarr oo)(sqrt(x^(2)+a^(2))-sqrt(x^(2)+b^(2)))/(sqrt(x^(2)+c^(2))-sqrt(x^(2)+d^(2))) = (a^(2)-b^(2))/(c^(2)-d^(2))

    (sqrt8)^(1/3) = ? (a) 2 (b) 4 (c) sqrt2 (d) 2sqrt2

    If a cos theta-b sin theta=c, then a sin theta+b cos theta=+-sqrt(a^(2)+b^(2)+c^(2))(b)+-sqrt(a^(2)+b^(2)-c^(2))(c)+-sqrt(c^(2)-a^(2)-b^(2))(d) None of these

    If a!=b then the length of common chord of the circles (x-a)^(2)+(y-b)^(2)=c^(2) and (x-b)^(2)+(y-a)^(2)=c^(2) is (A)sqrt(4c^(2)-2(a-b)^(2))(B)sqrt(c^(2)-(a-b)^(2))(C)sqrt(3c^(2)-(a-b)^(2))(D)sqrt(2c^(2)(a-b)^(2))(C)