Home
Class 12
MATHS
Differentiate the following w.r.t. x : ...

Differentiate the following w.r.t. x :
`cos^(-1)(x/(x+1))`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = \cos^{-1}\left(\frac{x}{x+1}\right) \) with respect to \( x \), we will follow these steps: ### Step 1: Identify the inner function Let \( u = \frac{x}{x+1} \). We can rewrite our function as: \[ y = \cos^{-1}(u) \] ### Step 2: Differentiate \( y \) with respect to \( u \) The derivative of \( \cos^{-1}(u) \) with respect to \( u \) is given by: \[ \frac{dy}{du} = -\frac{1}{\sqrt{1 - u^2}} \] ### Step 3: Differentiate \( u \) with respect to \( x \) Now we need to find \( \frac{du}{dx} \). We will use the quotient rule for differentiation: \[ u = \frac{x}{x+1} \] Using the quotient rule \( \frac{du}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \), where \( u = x \) and \( v = x + 1 \): - \( \frac{du}{dx} = 1 \) - \( \frac{dv}{dx} = 1 \) So, \[ \frac{du}{dx} = \frac{(x+1)(1) - x(1)}{(x+1)^2} = \frac{x + 1 - x}{(x + 1)^2} = \frac{1}{(x + 1)^2} \] ### Step 4: Apply the chain rule Now we can apply the chain rule: \[ \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = -\frac{1}{\sqrt{1 - u^2}} \cdot \frac{1}{(x + 1)^2} \] ### Step 5: Substitute back for \( u \) Now we need to substitute \( u = \frac{x}{x+1} \) back into the derivative: \[ \frac{dy}{dx} = -\frac{1}{\sqrt{1 - \left(\frac{x}{x+1}\right)^2}} \cdot \frac{1}{(x + 1)^2} \] ### Step 6: Simplify the expression Now we simplify \( 1 - \left(\frac{x}{x+1}\right)^2 \): \[ 1 - \left(\frac{x}{x+1}\right)^2 = 1 - \frac{x^2}{(x+1)^2} = \frac{(x+1)^2 - x^2}{(x+1)^2} = \frac{x^2 + 2x + 1 - x^2}{(x+1)^2} = \frac{2x + 1}{(x+1)^2} \] Thus, we have: \[ \sqrt{1 - \left(\frac{x}{x+1}\right)^2} = \sqrt{\frac{2x + 1}{(x + 1)^2}} = \frac{\sqrt{2x + 1}}{x + 1} \] ### Final expression for \( \frac{dy}{dx} \) Substituting this back, we get: \[ \frac{dy}{dx} = -\frac{1}{\frac{\sqrt{2x + 1}}{x + 1}} \cdot \frac{1}{(x + 1)^2} = -\frac{(x + 1)}{\sqrt{2x + 1}(x + 1)^2} = -\frac{1}{(x + 1)\sqrt{2x + 1}} \] ### Conclusion Thus, the derivative of \( y = \cos^{-1}\left(\frac{x}{x+1}\right) \) with respect to \( x \) is: \[ \frac{dy}{dx} = -\frac{1}{(x + 1)\sqrt{2x + 1}} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(e) (LONG ANSWER TYPE QUESTIONS (I))|22 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(e) (LONG ANSWER TYPE QUESTIONS (II))|5 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(d) (SHORT ANSWER TYPE QUESTIONS)|26 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

Differentiate the following w.r.t. x : cos^(-1)(sinx)

Differentiate the following w.r.t. x : cos(x^(x))

Differentiate the following w.r.t. x : x^(cos^(-1)x)

Differentiate the following w.r.t. x : xsec^(-1)x .

Differentiate the following w.r.t. x : (xcosx)^(x)

Differentiate the following w.r.t. x : e^(cos^(-1)(x+1))

Differentiate the following w.r.t. x : e^(cos^(-1)x^(2)

Differentiate the following w.r.t. x : e^(x)/x

Differentiate the following w.r.t. x : e^(-x)

Differentiate the following w.r.t. x : (sin^(-1)x)^(x)