Home
Class 12
MATHS
Differentiate w.r.t. as indicated : si...

Differentiate w.r.t. as indicated :
`sin^(-1)((2x)/(1+x^(2)))" w.r.t. "tan^(-1)((2x)/(1-x^(2)))`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate \( u = \sin^{-1}\left(\frac{2x}{1+x^2}\right) \) with respect to \( v = \tan^{-1}\left(\frac{2x}{1-x^2}\right) \), we will use the chain rule. We can express the derivative as: \[ \frac{du}{dv} = \frac{du/dx}{dv/dx} \] ### Step 1: Differentiate \( u \) with respect to \( x \) First, we need to find \( \frac{du}{dx} \). Using the formula for the derivative of the inverse sine function: \[ \frac{d}{dx} \sin^{-1}(y) = \frac{1}{\sqrt{1-y^2}} \cdot \frac{dy}{dx} \] Let \( y = \frac{2x}{1+x^2} \). We first find \( \frac{dy}{dx} \). Using the quotient rule: \[ \frac{dy}{dx} = \frac{(1+x^2)(2) - (2x)(2x)}{(1+x^2)^2} = \frac{2 + 2x^2 - 4x^2}{(1+x^2)^2} = \frac{2 - 2x^2}{(1+x^2)^2} = \frac{2(1-x^2)}{(1+x^2)^2} \] Now, we need to find \( 1 - y^2 \): \[ y^2 = \left(\frac{2x}{1+x^2}\right)^2 = \frac{4x^2}{(1+x^2)^2} \] \[ 1 - y^2 = 1 - \frac{4x^2}{(1+x^2)^2} = \frac{(1+x^2)^2 - 4x^2}{(1+x^2)^2} = \frac{1 + 2x^2 + x^4 - 4x^2}{(1+x^2)^2} = \frac{1 - 2x^2 + x^4}{(1+x^2)^2} = \frac{(1-x^2)^2}{(1+x^2)^2} \] Thus, we have: \[ \frac{du}{dx} = \frac{1}{\sqrt{1 - y^2}} \cdot \frac{dy}{dx} = \frac{1}{\sqrt{\frac{(1-x^2)^2}{(1+x^2)^2}}} \cdot \frac{2(1-x^2)}{(1+x^2)^2} \] \[ = \frac{(1+x^2)}{(1-x^2)} \cdot \frac{2(1-x^2)}{(1+x^2)^2} = \frac{2}{1+x^2} \] ### Step 2: Differentiate \( v \) with respect to \( x \) Now we find \( \frac{dv}{dx} \). Using the formula for the derivative of the inverse tangent function: \[ \frac{d}{dx} \tan^{-1}(y) = \frac{1}{1+y^2} \cdot \frac{dy}{dx} \] Let \( y = \frac{2x}{1-x^2} \). We first find \( \frac{dy}{dx} \). Using the quotient rule: \[ \frac{dy}{dx} = \frac{(1-x^2)(2) - (2x)(-2x)}{(1-x^2)^2} = \frac{2 - 2x^2 + 4x^2}{(1-x^2)^2} = \frac{2 + 2x^2}{(1-x^2)^2} = \frac{2(1+x^2)}{(1-x^2)^2} \] Now, we need to find \( 1 + y^2 \): \[ y^2 = \left(\frac{2x}{1-x^2}\right)^2 = \frac{4x^2}{(1-x^2)^2} \] \[ 1 + y^2 = 1 + \frac{4x^2}{(1-x^2)^2} = \frac{(1-x^2)^2 + 4x^2}{(1-x^2)^2} = \frac{1 - 2x^2 + x^4 + 4x^2}{(1-x^2)^2} = \frac{1 + 2x^2 + x^4}{(1-x^2)^2} = \frac{(1+x^2)^2}{(1-x^2)^2} \] Thus, we have: \[ \frac{dv}{dx} = \frac{1}{1+y^2} \cdot \frac{dy}{dx} = \frac{(1-x^2)^2}{(1+x^2)^2} \cdot \frac{2(1+x^2)}{(1-x^2)^2} = \frac{2}{1+x^2} \] ### Step 3: Compute \( \frac{du}{dv} \) Now we can compute \( \frac{du}{dv} \): \[ \frac{du}{dv} = \frac{du/dx}{dv/dx} = \frac{\frac{2}{1+x^2}}{\frac{2}{1+x^2}} = 1 \] ### Final Answer Thus, the derivative of \( \sin^{-1}\left(\frac{2x}{1+x^2}\right) \) with respect to \( \tan^{-1}\left(\frac{2x}{1-x^2}\right) \) is: \[ \frac{du}{dv} = 1 \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(i) (SHORT ANSWER TYPE QUESTIONS)|27 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(i) (LONG ANSWER TYPE QUESTIONS (I))|49 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(h) (SHORT ANSWER TYPE QUESTIONS)|11 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

Differentiate w.r.t. as indicated : sin^(-1)((2x)/(1+x^(2)))" w.r.t. "tan^(-1)x

Differentiate w.r.t. as indicated : cos^(-1)(1/sqrt(1+x^(2)))" w.r.t. "tan^(-1)x

Differentiate w.r.t. as indicated : cos^(-1)((1-x^(2))/(1+x^(2)))" w.r.t. "sin^(-1)((2x)/(1+x^(2)))

Differentiate w.r.t. as indicated : "tan"^(-1)(3x-x^(3))/(1-3x^(2))" w.r.t. ""tan"^(-1)(2x)/(1-x^(2))

Differentiate w.r.t. as indicated : tan^(-1)(x/(sqrt(1-x^(2))))" w.r.t. "sin^(-1)(2xsqrt(1-x^(2))) .

Differentiate w.r.t. as indicated : tan^(-1)((3x-x^(3))/(1-3x^(2)))" w.r.t. "tan^(-1)((x)/(sqrt(1-x^(2))))

Differentiate w.r.t. as indicated : tan^(-1)((sqrt(1+x^(2))-1)/(x))" w.r.t. "sin^(-1)((2x)/(1+x^(2)))

Differentiate w.r.t. as indicated : sinx^(2)" w.r.t. "x^(3)

Differentiate tan^(-1)((2x)/(1-x^(2))) w.r.t. sin^(-1)((2x)/(1+x^(2))).

Differentiate the following w.r.t. as indicated : x^(2)/(1+x^(2))" w.r.t. "x^(2)