Home
Class 12
MATHS
Differentiate the following w.r.t. x : ...

Differentiate the following w.r.t. x :
`x^(sinx)+(sinx)^(x)`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = x^{\sin x} + \sin^x \) with respect to \( x \), we will break it down into two parts: \( u = x^{\sin x} \) and \( v = \sin^x \). We will find the derivatives \( \frac{du}{dx} \) and \( \frac{dv}{dx} \) separately and then combine them. ### Step-by-Step Solution: 1. **Define the Function**: \[ y = x^{\sin x} + \sin^x \] 2. **Differentiate \( u = x^{\sin x} \)**: - Take the natural logarithm of both sides: \[ \log u = \sin x \cdot \log x \] - Differentiate both sides with respect to \( x \): \[ \frac{1}{u} \frac{du}{dx} = \cos x \cdot \log x + \sin x \cdot \frac{1}{x} \] - Multiply through by \( u \): \[ \frac{du}{dx} = u \left( \cos x \cdot \log x + \frac{\sin x}{x} \right) \] - Substitute back \( u = x^{\sin x} \): \[ \frac{du}{dx} = x^{\sin x} \left( \cos x \cdot \log x + \frac{\sin x}{x} \right) \] 3. **Differentiate \( v = \sin^x \)**: - Take the natural logarithm of both sides: \[ \log v = x \cdot \log(\sin x) \] - Differentiate both sides with respect to \( x \): \[ \frac{1}{v} \frac{dv}{dx} = \log(\sin x) + x \cdot \frac{\cos x}{\sin x} \] - Multiply through by \( v \): \[ \frac{dv}{dx} = v \left( \log(\sin x) + x \cdot \cot x \right) \] - Substitute back \( v = \sin^x \): \[ \frac{dv}{dx} = \sin^x \left( \log(\sin x) + x \cdot \cot x \right) \] 4. **Combine the Results**: - Now, we can find \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx} \] - Substitute the expressions we found: \[ \frac{dy}{dx} = x^{\sin x} \left( \cos x \cdot \log x + \frac{\sin x}{x} \right) + \sin^x \left( \log(\sin x) + x \cdot \cot x \right) \] ### Final Answer: \[ \frac{dy}{dx} = x^{\sin x} \left( \cos x \cdot \log x + \frac{\sin x}{x} \right) + \sin^x \left( \log(\sin x) + x \cdot \cot x \right) \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(j) (LONG ANSWER TYPE QUESTIONS (I))|10 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(k) (SHORT ANSWER TYPE QUESTIONS)|19 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(i) (SHORT ANSWER TYPE QUESTIONS)|27 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

Differentiate the following w.r.t. x : e^(x)sinx

Differentiate the following w.r.t. x : x^(sinx)+(sinx)^(cosx)

Differentiate the following w.r.t. x : x^(sinx)+(sinx)^(cosx)

Differentiate the following w.r.t. x : e^(x)/sinx

Differentiate the following w.r.t. x : (sinx)^(x)

Differentiate the following w.r.t. x : log(sinx)

Differentiate the following w.r.t. x : (x)^(sinx)+sin(x^(x))

Differentiate the following w.r.t. x : (x)^(sinx)+(cosx)^(x)

Differentiate the following w.r.t. x : e^(-x)

Differentiate the following w.r.t. x : (sinx)^(sinx)