Home
Class 12
MATHS
Evaluate the following int (2x+9)/(x^2...

Evaluate the following
`int (2x+9)/(x^2+9x+30) dx.`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ \int \frac{2x + 9}{x^2 + 9x + 30} \, dx, \] we can follow these steps: ### Step 1: Simplify the Integral We can separate the integral into two parts: \[ \int \frac{2x}{x^2 + 9x + 30} \, dx + \int \frac{9}{x^2 + 9x + 30} \, dx. \] ### Step 2: Evaluate the First Integral For the first integral, we can use substitution. Let \[ t = x^2 + 9x + 30. \] Then, differentiate \(t\) with respect to \(x\): \[ dt = (2x + 9) \, dx. \] This means that \[ dx = \frac{dt}{2x + 9}. \] Substituting \(t\) into the integral gives: \[ \int \frac{2x + 9}{t} \cdot \frac{dt}{2x + 9} = \int \frac{dt}{t} = \ln |t| + C = \ln |x^2 + 9x + 30| + C. \] ### Step 3: Evaluate the Second Integral For the second integral, we need to evaluate \[ \int \frac{9}{x^2 + 9x + 30} \, dx. \] To do this, we can complete the square for the quadratic in the denominator: \[ x^2 + 9x + 30 = (x + \frac{9}{2})^2 + \frac{120}{4} - \frac{81}{4} = (x + \frac{9}{2})^2 + \frac{39}{4}. \] Now, we can rewrite the integral: \[ \int \frac{9}{(x + \frac{9}{2})^2 + \frac{39}{4}} \, dx. \] Using the formula for the integral of the form \(\int \frac{a}{x^2 + a^2} \, dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) + C\), we have: Here \(a^2 = \frac{39}{4}\), so \(a = \frac{\sqrt{39}}{2}\). Thus, the integral becomes: \[ 9 \cdot \frac{2}{\sqrt{39}} \tan^{-1} \left(\frac{2(x + \frac{9}{2})}{\sqrt{39}}\right) + C = \frac{18}{\sqrt{39}} \tan^{-1} \left(\frac{2(x + \frac{9}{2})}{\sqrt{39}}\right) + C. \] ### Step 4: Combine the Results Combining both parts, we have: \[ \int \frac{2x + 9}{x^2 + 9x + 30} \, dx = \ln |x^2 + 9x + 30| + \frac{18}{\sqrt{39}} \tan^{-1} \left(\frac{2(x + \frac{9}{2})}{\sqrt{39}}\right) + C. \] ### Final Answer Thus, the final result is: \[ \int \frac{2x + 9}{x^2 + 9x + 30} \, dx = \ln |x^2 + 9x + 30| + \frac{18}{\sqrt{39}} \tan^{-1} \left(\frac{2(x + \frac{9}{2})}{\sqrt{39}}\right) + C. \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(b) SHORT ANSWER TYPE|14 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(b) LONG ANSWER TYPE QUESTION|28 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(a) LONG ANSWER TYPE QUESTION|10 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

int (2x-9)/sqrt(x^2-9x) dx=

Evaluate the following int(dx)/(sqrt(x)(x+9))

Knowledge Check

  • int(dx)/(9x^2-8)=

    A
    `(1)/(12sqrt(2))log|(3x-2sqrt(2))/(3x+2sqrt(2))|+c`
    B
    `(1)/(12sqrt(2))log|(3x+2sqrt(2))/(3x-2sqrt(2))|+c`
    C
    `(1)/(6sqrt(2))log|(3x-2sqrt(2))/(3x+2sqrt(2))|+c`
    D
    `(1)/(6sqrt(2))log|(3x+2sqrt(2))/(3x-2sqrt(2))|+c`
  • Similar Questions

    Explore conceptually related problems

    Evaluate the following : int_(-9)^(9)(x^(3))/(4-x^(2))dx

    Evaluate the following integrals int (x dx)/(9-16x^(4))

    Evaluate the following integral: int_1^2(3x)/(9x^2-1)dx

    int(2x+9)^(5)dx

    Find the value of the following: int_0^(2/3) dx/(4+9x^2)

    int(dx)/(9x^(2)+6x+10)

    Evaluate the following integrals: inte^(3x)((3x-1)/(9x^(2)))dx