Home
Class 12
MATHS
(i) int x sec^2 x dx (ii) int x cos^2 x ...

(i) `int x sec^2 x dx` (ii) `int x cos^2 x dx`

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the integrals step by step. ### Part (i): \( \int x \sec^2 x \, dx \) 1. **Identify the method**: We will use integration by parts. Recall the formula: \[ \int u \, dv = uv - \int v \, du \] Here, we can choose: - \( u = x \) (which means \( du = dx \)) - \( dv = \sec^2 x \, dx \) (which means \( v = \tan x \)) 2. **Apply integration by parts**: \[ \int x \sec^2 x \, dx = x \tan x - \int \tan x \, dx \] 3. **Integrate \( \tan x \)**: The integral of \( \tan x \) is: \[ \int \tan x \, dx = -\log |\cos x| + C = \log |\sec x| + C \] 4. **Combine the results**: \[ \int x \sec^2 x \, dx = x \tan x - \log |\sec x| + C \] ### Final Result for Part (i): \[ \int x \sec^2 x \, dx = x \tan x - \log |\sec x| + C \] --- ### Part (ii): \( \int x \cos^2 x \, dx \) 1. **Rewrite \( \cos^2 x \)**: Use the identity: \[ \cos^2 x = \frac{1 + \cos(2x)}{2} \] Thus, we can rewrite the integral: \[ \int x \cos^2 x \, dx = \int x \left(\frac{1 + \cos(2x)}{2}\right) \, dx = \frac{1}{2} \int x \, dx + \frac{1}{2} \int x \cos(2x) \, dx \] 2. **Integrate \( \frac{1}{2} \int x \, dx \)**: \[ \frac{1}{2} \int x \, dx = \frac{1}{2} \cdot \frac{x^2}{2} = \frac{x^2}{4} \] 3. **Integrate \( \frac{1}{2} \int x \cos(2x) \, dx \)**: Again, use integration by parts: - Let \( u = x \) (thus \( du = dx \)) - Let \( dv = \cos(2x) \, dx \) (thus \( v = \frac{1}{2} \sin(2x) \)) Applying integration by parts: \[ \int x \cos(2x) \, dx = x \cdot \frac{1}{2} \sin(2x) - \int \frac{1}{2} \sin(2x) \, dx \] 4. **Integrate \( \int \sin(2x) \, dx \)**: \[ \int \sin(2x) \, dx = -\frac{1}{2} \cos(2x) + C \] 5. **Combine results**: \[ \int x \cos(2x) \, dx = \frac{x}{2} \sin(2x) + \frac{1}{4} \cos(2x) + C \] 6. **Final combination**: \[ \int x \cos^2 x \, dx = \frac{x^2}{4} + \frac{1}{2} \left( \frac{x}{2} \sin(2x) + \frac{1}{4} \cos(2x) \right) + C \] ### Final Result for Part (ii): \[ \int x \cos^2 x \, dx = \frac{x^2}{4} + \frac{x}{4} \sin(2x) + \frac{1}{8} \cos(2x) + C \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7( e) LONG ANSWER TYPE QUESTION (I)|15 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7( e) LONG ANSWER TYPE QUESTION (II)|1 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7( e) FAQ|8 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

int x sec^2x dx

int x^2 cos^2 x dx

(i) int x sin^-1 x dx (ii) int x cos^-1 x dx (iii) int x tan^-1 x dx (iv) int x cot^-1 x dx

(i) int x^3 sin x^2 dx (ii) int x^3 cos x^2 dx

(i) int e^x sec^2 (e^x) dx (ii) int e^x cosec^2 (e^x) dx

(i) int x^2 e^x dx (ii) int x^2 e^(3x) dx (ii) int x^3 e^x dx

(i) int sin^2x cos^3x dx (ii) int sin^3 x cos^2 x dx (iii) int sin^3 x cos^3 x dx

(i) int x^2 sin x dx (ii) int x^2 sin 2x dx

(i) int x^2 log x dx (ii) int (x^2+1) log x dx

(i) int " x sec"^(2) " 2x dx "" "(ii) int " x sin"^(3) " x dx "