Home
Class 12
MATHS
(i) int x^2 e^x dx (ii) int x^2 e^(3x)...

(i) `int x^2 e^x dx`
(ii) `int x^2 e^(3x) dx`
(ii) `int x^3 e^x dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integrals step by step, we will use the method of integration by parts, which is based on the formula: \[ \int u \, dv = uv - \int v \, du \] where \( u \) is a function we differentiate, and \( dv \) is a function we integrate. ### (i) \(\int x^2 e^x \, dx\) 1. **Choose \( u \) and \( dv \)**: - Let \( u = x^2 \) (then \( du = 2x \, dx \)) - Let \( dv = e^x \, dx \) (then \( v = e^x \)) 2. **Apply integration by parts**: \[ \int x^2 e^x \, dx = x^2 e^x - \int e^x (2x) \, dx \] 3. **Now we need to solve \(\int 2x e^x \, dx\)** using integration by parts again: - Let \( u = 2x \) (then \( du = 2 \, dx \)) - Let \( dv = e^x \, dx \) (then \( v = e^x \)) 4. **Apply integration by parts again**: \[ \int 2x e^x \, dx = 2x e^x - \int 2 e^x \, dx = 2x e^x - 2 e^x \] 5. **Substituting back into the first equation**: \[ \int x^2 e^x \, dx = x^2 e^x - (2x e^x - 2 e^x) = x^2 e^x - 2x e^x + 2 e^x + C \] 6. **Final result**: \[ \int x^2 e^x \, dx = e^x (x^2 - 2x + 2) + C \] ### (ii) \(\int x^2 e^{3x} \, dx\) 1. **Choose \( u \) and \( dv \)**: - Let \( u = x^2 \) (then \( du = 2x \, dx \)) - Let \( dv = e^{3x} \, dx \) (then \( v = \frac{1}{3} e^{3x} \)) 2. **Apply integration by parts**: \[ \int x^2 e^{3x} \, dx = \frac{1}{3} x^2 e^{3x} - \int \frac{1}{3} e^{3x} (2x) \, dx \] 3. **Now we need to solve \(\int 2x e^{3x} \, dx\)** using integration by parts again: - Let \( u = 2x \) (then \( du = 2 \, dx \)) - Let \( dv = e^{3x} \, dx \) (then \( v = \frac{1}{3} e^{3x} \)) 4. **Apply integration by parts again**: \[ \int 2x e^{3x} \, dx = \frac{2}{3} x e^{3x} - \int \frac{2}{3} e^{3x} \, dx = \frac{2}{3} x e^{3x} - \frac{2}{9} e^{3x} \] 5. **Substituting back into the first equation**: \[ \int x^2 e^{3x} \, dx = \frac{1}{3} x^2 e^{3x} - \left( \frac{2}{3} x e^{3x} - \frac{2}{9} e^{3x} \right) \] 6. **Final result**: \[ \int x^2 e^{3x} \, dx = \frac{1}{3} x^2 e^{3x} - \frac{2}{3} x e^{3x} + \frac{2}{9} e^{3x} + C \] ### (iii) \(\int x^3 e^x \, dx\) 1. **Choose \( u \) and \( dv \)**: - Let \( u = x^3 \) (then \( du = 3x^2 \, dx \)) - Let \( dv = e^x \, dx \) (then \( v = e^x \)) 2. **Apply integration by parts**: \[ \int x^3 e^x \, dx = x^3 e^x - \int e^x (3x^2) \, dx \] 3. **Now we need to solve \(\int 3x^2 e^x \, dx\)** using the result from part (i): \[ \int 3x^2 e^x \, dx = 3 \left( e^x (x^2 - 2x + 2) \right) = 3e^x (x^2 - 2x + 2) \] 4. **Substituting back into the first equation**: \[ \int x^3 e^x \, dx = x^3 e^x - 3e^x (x^2 - 2x + 2) \] 5. **Final result**: \[ \int x^3 e^x \, dx = e^x (x^3 - 3x^2 + 6x - 6) + C \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7( e) LONG ANSWER TYPE QUESTION (I)|15 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7( e) LONG ANSWER TYPE QUESTION (II)|1 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7( e) FAQ|8 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

int e^(3x)dx

int x^3e^(x^4)dx

int e^(3x+2) dx

(i) int x^3 sin x^2 dx (ii) int x^3 cos x^2 dx

(i) int x^(2) " cos x dx " " "(ii) int x^(2) e^(3x) " dx "

(i) int e^x sec^2 (e^x) dx (ii) int e^x cosec^2 (e^x) dx

(i) int e^(3x) cos 5x dx (ii) int e^(3x) sin 4x dx

int e^(x^2) x^3 dx

int e^x(3+x) dx

(i) int 2^x/sqrt(1-4^x) dx (ii) int sqrt(e^x-1) dx