Home
Class 12
MATHS
(i) int sin^-1 x dx (ii) int cos^-1 x ...

(i) `int sin^-1 x dx`
(ii) `int cos^-1 x dx`
(iii) `int cot^-1 x dx`

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the integrals step by step. ### (i) Integration of \( \sin^{-1} x \, dx \) 1. **Use Integration by Parts**: \[ \int \sin^{-1} x \, dx = x \sin^{-1} x - \int x \cdot \frac{d}{dx}(\sin^{-1} x) \, dx \] Here, we let \( u = \sin^{-1} x \) and \( dv = dx \). 2. **Differentiate \( \sin^{-1} x \)**: \[ \frac{d}{dx}(\sin^{-1} x) = \frac{1}{\sqrt{1 - x^2}} \] 3. **Substitute into the equation**: \[ \int \sin^{-1} x \, dx = x \sin^{-1} x - \int x \cdot \frac{1}{\sqrt{1 - x^2}} \, dx \] 4. **Let \( t = 1 - x^2 \)**, then \( dt = -2x \, dx \) or \( x \, dx = -\frac{1}{2} dt \): \[ \int x \cdot \frac{1}{\sqrt{1 - x^2}} \, dx = -\frac{1}{2} \int \frac{1}{\sqrt{t}} \, dt \] 5. **Integrate**: \[ -\frac{1}{2} \int t^{-1/2} \, dt = -\frac{1}{2} \cdot 2\sqrt{t} = -\sqrt{1 - x^2} \] 6. **Combine results**: \[ \int \sin^{-1} x \, dx = x \sin^{-1} x + \sqrt{1 - x^2} + C \] ### (ii) Integration of \( \cos^{-1} x \, dx \) 1. **Use Integration by Parts**: \[ \int \cos^{-1} x \, dx = x \cos^{-1} x - \int x \cdot \frac{d}{dx}(\cos^{-1} x) \, dx \] 2. **Differentiate \( \cos^{-1} x \)**: \[ \frac{d}{dx}(\cos^{-1} x) = -\frac{1}{\sqrt{1 - x^2}} \] 3. **Substitute into the equation**: \[ \int \cos^{-1} x \, dx = x \cos^{-1} x + \int \frac{x}{\sqrt{1 - x^2}} \, dx \] 4. **Let \( t = 1 - x^2 \)**, then \( dt = -2x \, dx \): \[ \int \frac{x}{\sqrt{1 - x^2}} \, dx = -\frac{1}{2} \int \frac{1}{\sqrt{t}} \, dt \] 5. **Integrate**: \[ -\frac{1}{2} \cdot 2\sqrt{t} = -\sqrt{1 - x^2} \] 6. **Combine results**: \[ \int \cos^{-1} x \, dx = x \cos^{-1} x - \sqrt{1 - x^2} + C \] ### (iii) Integration of \( \cot^{-1} x \, dx \) 1. **Use Integration by Parts**: \[ \int \cot^{-1} x \, dx = x \cot^{-1} x - \int x \cdot \frac{d}{dx}(\cot^{-1} x) \, dx \] 2. **Differentiate \( \cot^{-1} x \)**: \[ \frac{d}{dx}(\cot^{-1} x) = -\frac{1}{1 + x^2} \] 3. **Substitute into the equation**: \[ \int \cot^{-1} x \, dx = x \cot^{-1} x + \int \frac{x}{1 + x^2} \, dx \] 4. **Let \( t = 1 + x^2 \)**, then \( dt = 2x \, dx \): \[ \int \frac{x}{1 + x^2} \, dx = \frac{1}{2} \int \frac{1}{t} \, dt \] 5. **Integrate**: \[ \frac{1}{2} \ln |t| = \frac{1}{2} \ln(1 + x^2) \] 6. **Combine results**: \[ \int \cot^{-1} x \, dx = x \cot^{-1} x + \frac{1}{2} \ln(1 + x^2) + C \] ### Summary of Results: 1. \( \int \sin^{-1} x \, dx = x \sin^{-1} x + \sqrt{1 - x^2} + C \) 2. \( \int \cos^{-1} x \, dx = x \cos^{-1} x - \sqrt{1 - x^2} + C \) 3. \( \int \cot^{-1} x \, dx = x \cot^{-1} x + \frac{1}{2} \ln(1 + x^2) + C \)
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7( e) LONG ANSWER TYPE QUESTION (II)|1 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(f)|12 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise 7(e )SHORT ANSWER QUESTION TYPE|19 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

(i) int x sin^-1 x dx (ii) int x cos^-1 x dx (iii) int x tan^-1 x dx (iv) int x cot^-1 x dx

(i) int sin^2x cos^3x dx (ii) int sin^3 x cos^2 x dx (iii) int sin^3 x cos^3 x dx

(i) int sin mx dx (ii) int 2x sin (x^2+1) dx (iii) int x sqrt(1+2x^2) dx.

int sin^(-1)(cos x)dx

int cos^(-1)(sin x)dx

(i) int 1/(1-x^3) dx (ii) int 1/(x^3-1) dx (iii) int (2x)/(x^3-1) dx

int sin^(-1)(cos3 x)dx

(i) int_2^3 1/x dx (ii) int_1^2 1/x^2 dx (iii) int_1^e (dx)/x (iv) int_-1^1 (x+1) dx

(i) int tan dx=log |secx|+c (ii) int cot x dx=log |sin x|+c (iii) int tan x dx=log |sin x| +c (iv) int tan x dx =-log cos x +c

int 1/(sin x cos x) dx