Home
Class 12
MATHS
Evaluate: int 1/((x+1)(x+2)) dx...

Evaluate: `int 1/((x+1)(x+2)) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ \int \frac{1}{(x+1)(x+2)} \, dx, \] we will use the method of partial fractions. Here’s a step-by-step solution: ### Step 1: Set up the partial fraction decomposition We want to express the integrand \(\frac{1}{(x+1)(x+2)}\) in the form: \[ \frac{A}{x+1} + \frac{B}{x+2}, \] where \(A\) and \(B\) are constants to be determined. ### Step 2: Write the equation We can write: \[ \frac{1}{(x+1)(x+2)} = \frac{A}{x+1} + \frac{B}{x+2}. \] Multiplying both sides by \((x+1)(x+2)\) to eliminate the denominators gives: \[ 1 = A(x+2) + B(x+1). \] ### Step 3: Expand and collect terms Expanding the right-hand side: \[ 1 = Ax + 2A + Bx + B = (A + B)x + (2A + B). \] ### Step 4: Set up equations for coefficients For the equation to hold for all \(x\), the coefficients of \(x\) and the constant terms must be equal. This gives us the system of equations: 1. \(A + B = 0\) (coefficient of \(x\)) 2. \(2A + B = 1\) (constant term) ### Step 5: Solve the system of equations From the first equation, we can express \(B\) in terms of \(A\): \[ B = -A. \] Substituting \(B = -A\) into the second equation: \[ 2A - A = 1 \implies A = 1. \] Now substituting \(A = 1\) back into \(B = -A\): \[ B = -1. \] ### Step 6: Rewrite the integral Now we can rewrite the integrand using the values of \(A\) and \(B\): \[ \frac{1}{(x+1)(x+2)} = \frac{1}{x+1} - \frac{1}{x+2}. \] ### Step 7: Integrate term by term Now we can integrate: \[ \int \left( \frac{1}{x+1} - \frac{1}{x+2} \right) \, dx = \int \frac{1}{x+1} \, dx - \int \frac{1}{x+2} \, dx. \] The integrals can be computed as follows: \[ \int \frac{1}{x+1} \, dx = \ln|x+1| + C_1, \] \[ \int \frac{1}{x+2} \, dx = \ln|x+2| + C_2. \] Thus, we have: \[ \int \frac{1}{(x+1)(x+2)} \, dx = \ln|x+1| - \ln|x+2| + C. \] ### Step 8: Combine the logarithms Using the properties of logarithms, we can combine the terms: \[ \ln|x+1| - \ln|x+2| = \ln\left(\frac{|x+1|}{|x+2|}\right). \] ### Final Result Thus, the final result is: \[ \int \frac{1}{(x+1)(x+2)} \, dx = \ln\left(\frac{|x+1|}{|x+2|}\right) + C. \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(i) SHORT ANSWER TYPE QUESTIONS|4 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(i) LONG ANSWER TYPE QUESTIONS (I)|37 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7 (h) SHORT ANSWER TYPE QUESTION|3 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(x-1)/((x+1)(x-2))dx

Evaluate: int1/((x+1)^2(x^2+1))\ dx

Evaluate: int(2x+1)/((x+1)(x-2))dx

Evaluate: int1/((x^2+1)(x^2+2))\ dx

Evaluate: int(2x-1)/((x-1)^(2))dx

Evaluate: int(1)/((x-1)sqrt(x+2))dx

Evaluate int (1)/((x+1)sqrt(x-2))dx .

.Evaluate: int(1)/((1-x)(1+x^(2)))dx

Evaluate: int(1)/(sqrt((x-1)(x-2)))dx

Evaluate: int(1)/((x-1)(x+1)(x+2))dx