Home
Class 12
MATHS
Find the moment about (1,-1,-1) of the f...

Find the moment about `(1,-1,-1)` of the force `3hat(i)+4hat(j)-5hat(k)` acting at `(1, 0,-2)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the moment of the force \( \mathbf{F} = 3\hat{i} + 4\hat{j} - 5\hat{k} \) acting at the point \( A(1, 0, -2) \) about the point \( B(1, -1, -1) \), we can follow these steps: ### Step 1: Determine the position vectors The position vector of point \( A \) is: \[ \mathbf{A} = 1\hat{i} + 0\hat{j} - 2\hat{k} = \hat{i} - 2\hat{k} \] The position vector of point \( B \) is: \[ \mathbf{B} = 1\hat{i} - 1\hat{j} - 1\hat{k} = \hat{i} - \hat{j} - \hat{k} \] ### Step 2: Calculate the vector \( \mathbf{R} \) The vector \( \mathbf{R} \) from point \( B \) to point \( A \) is given by: \[ \mathbf{R} = \mathbf{A} - \mathbf{B} \] Calculating this: \[ \mathbf{R} = (\hat{i} - 2\hat{k}) - (\hat{i} - \hat{j} - \hat{k}) = \hat{i} - 2\hat{k} - \hat{i} + \hat{j} + \hat{k} \] Simplifying this gives: \[ \mathbf{R} = 0\hat{i} + 1\hat{j} - 1\hat{k} = \hat{j} - \hat{k} \] ### Step 3: Calculate the moment \( \mathbf{M} \) The moment \( \mathbf{M} \) about point \( B \) due to the force \( \mathbf{F} \) is given by the cross product: \[ \mathbf{M} = \mathbf{R} \times \mathbf{F} \] Substituting \( \mathbf{R} = \hat{j} - \hat{k} \) and \( \mathbf{F} = 3\hat{i} + 4\hat{j} - 5\hat{k} \): \[ \mathbf{M} = (\hat{j} - \hat{k}) \times (3\hat{i} + 4\hat{j} - 5\hat{k}) \] ### Step 4: Compute the cross product Using the determinant method to compute the cross product: \[ \mathbf{M} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 0 & 1 & -1 \\ 3 & 4 & -5 \end{vmatrix} \] Calculating this determinant: 1. For \( \hat{i} \): \[ = \hat{i} \left( 1 \cdot (-5) - (-1) \cdot 4 \right) = \hat{i} (-5 + 4) = -1\hat{i} \] 2. For \( \hat{j} \): \[ = -\hat{j} \left( 0 \cdot (-5) - (-1) \cdot 3 \right) = -\hat{j} (0 + 3) = -3\hat{j} \] 3. For \( \hat{k} \): \[ = \hat{k} \left( 0 \cdot 4 - 1 \cdot 3 \right) = \hat{k} (0 - 3) = -3\hat{k} \] Combining these results: \[ \mathbf{M} = -1\hat{i} - 3\hat{j} - 3\hat{k} \] ### Step 5: Find the magnitude of the moment The magnitude of the moment \( |\mathbf{M}| \) is given by: \[ |\mathbf{M}| = \sqrt{(-1)^2 + (-3)^2 + (-3)^2} = \sqrt{1 + 9 + 9} = \sqrt{19} \] ### Final Result The moment about the point \( (1, -1, -1) \) of the force \( 3\hat{i} + 4\hat{j} - 5\hat{k} \) is: \[ \mathbf{M} = -1\hat{i} - 3\hat{j} - 3\hat{k} \quad \text{and} \quad |\mathbf{M}| = \sqrt{19} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (i) Long Answer Type Questions (I)|8 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (j) Short Answer Type Questions|17 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (f) Short Answer Type Questions|11 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

Find the moment of the couple formed by the forces 5hat(i)+hat(k) and -5hat(i)-hat(k) acting at the points (9, -1, 2) and (3, -2,1) respectively.

Find the moment of vec F about point (2,-1,3), where force vec F=3hat i+2hat j-4hat k is acting on point (1,-1,2)

Knowledge Check

  • What is the magnitude of the moment of the couple consisting of the force vec(F)=3 hat(i)+2hat(j)-hat(k) acting through the point hat(i)-hat(j)+hat(k) and -vec(F) acting through the point 2hat(i)-3hat(j)-hat(k) ?

    A
    `2sqrt(5)`
    B
    `3sqrt(5)`
    C
    `5sqrt(5)`
    D
    `7sqrt(5)`
  • Find the torque of a force F=-3hat(i)+2hat(j)+hat(k) acting at the point r=8hat(i)+2hat(j)+3hat(k),(iftau=rxxF)

    A
    `14hat(i)-38hat(j)+16hat(k)`
    B
    `4hat(i)+4hat(j)+6hat(k)`
    C
    `-14hat(i)+38hat(j)-16hat(k)`
    D
    `-4hat(i)-17hat(j)+22hat(k)`
  • Similar Questions

    Explore conceptually related problems

    Find alpha and beta if the force vec(F) = 2hat(i) - 3hat(j) +hat(k) acting at (2,beta,-1) produces no torque about (alpha,0,2)

    Find the moment of the couple formed by forces 5hat(i) +hat(k) acting at (9,-1,2) and -5hat(i)-hat(k) acting at (3,-2,1)

    Find the torque of the force vec(F)=(2hat(i)-3hat(j)+4hat(k)) N acting at the point vec(r )=(3hat(i)=2hat(j)+3hat(k)) m about the origion.

    Find the vector moment of the forces : hat(i)+2hat(j)-3hat(k), 2hat(i)+3hat(j)+4hat(k) and -hat(i)-hat(j)+hat(k) acting on a particle at a point P (0, 1, 2) about the point A(1, -2, 0) .

    Find the moment about the point hat(i)+2hat(j)-hat(k) of a force represented by hat(i)+2hat(j)+hat(k) acting through the point 2hat(i)+3hat(j)+hat(k) .

    Find the moment about a line through (0, 0, 0) having the direction 2hat(i)-2hat(j)+hat(k) due to a 20 kg force acting at (-4, 2,5) in the direction of 12 hat(i)-4hat(j)-3hat(k) .