Home
Class 12
MATHS
What is the area of the triangle OAB whe...

What is the area of the triangle OAB where O is the origin, `vec(OA)=3hat(i)-hat(j)+hat(k) and vec(OB)=2hat(i)-hat(j)+3hat(k)` ?

Text Solution

Verified by Experts

The correct Answer is:
`(1)/(2)5sqrt(6)` sq. units.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (i) Short Answer Type Questions|3 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (i) Long Answer Type Questions (I)|8 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (e ) Long Answer Type Questions (II)|4 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

Find a unit vector in the direction of (vec(a)+vec(b)) , where : vec(a)=2hat(i)+2hat(j)-5hat(k) and vec(b)=2hat(i)+hat(j)+3hat(k) .

Find the angle between the vectors vec(a) and vec(b) , when (i) vec(a)=hat(i)-2hat(j)+3 hat(k) and vec(b)=3hat(i)-2hat(j)+hat(k) (ii) vec(a)=3 hat(i)+hat(j)+2hat(k) and vec(b)=2hat(i)-2hat(j)+4 hat(k) (iii) vec(a)=hat(i)-hat(j) and vec(b)=hat(j)+hat(k) .

Knowledge Check

  • What is the area of Delta OAB , where O is the origin, OA= 3 hat(i) - hat(j) + hat(k) and OB= 2 hat(i) + hat(j)- 3hat(k) ?

    A
    A) `5 sqrt6` sq units
    B
    B) `(5 sqrt6)/(2)` sq units
    C
    C) `sqrt6` sq units
    D
    D) `sqrt30` sq units
  • Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

    A
    Parallel
    B
    Antiparallel
    C
    Perpendicular
    D
    at acute angle with each other
  • The area of the triangle whose adjacent sides are : vec(a)=3hat(i)+hat(j)+4hat(k) and vec(b)=hat(i)-hat(j)+hat(k) is :

    A
    `(1)/(2)sqrt(42)`
    B
    42
    C
    `sqrt(42)`
    D
    `sqrt(21)`
  • Similar Questions

    Explore conceptually related problems

    Find the area of the parallelogram whose adjacent sides are represented by the vectors (i) vec(a)=hat(i) + 2 hat(j)+ 3 hat(k) and vec(b)=-3 hat(i)- 2 hat(j) + hat(k) (ii) vec(a)=(3 hat(i)+hat(j) + 4 hat(k)) and vec(b)= ( hat(i)- hat(j) + hat(k)) (iii) vec(a) = 2 hat(i)+ hat(j) +3 hat(k) and vec(b)= hat(i)-hat(j) (iv) vec(b)= 2 hat(i) and vec(b) = 3 hat(j).

    Find the sum of the vectors vec(a)=(hat(i)-3hat(k)), vec(b)=(2hat(j)-hat(k)) and vec(c)=(2hat(i)-3hat(j)+2hat(k)) .

    Determine a vector product of vec(A)=hat(i)+hat(j)+hat(k)and vec(B)=-3hat(i)+hat(j)+hat(k)

    If G is the centroid of the triangle PQR, where vec(GP)=2hat(i)+hat(j)+3hat(k),vec(GQ)=hat(i)-hat(j)+2hat(k), then the area of the triangle PQR is

    If vec(a)=2hat(i)+3hat(j)-hat(k) , then |vec(a)| is :