Home
Class 12
MATHS
If A is a 3xx3 non-singular matrix such ...

If A is a `3xx3` non-singular matrix such that `"AA"'=A'A` and `B=A^(-1)A'`, then `"BB"'` equals:

A

`I`

B

`B^(-1)`

C

`(B^(-1))`'

D

`I+B`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( BB' \) where \( B = A^{-1} A' \) and \( A \) is a non-singular \( 3 \times 3 \) matrix satisfying \( AA' = A'A \). ### Step-by-Step Solution: 1. **Understanding the Given Information**: We know that \( A \) is a \( 3 \times 3 \) non-singular matrix and that \( AA' = A'A \). This implies that \( A \) is a normal matrix. 2. **Define Matrix B**: We have \( B = A^{-1} A' \). 3. **Calculate \( BB' \)**: To find \( BB' \), we first need to compute \( B' \): \[ B' = (A^{-1} A')' = (A')' (A^{-1})' = A A^{-1} = I \] where \( I \) is the identity matrix. 4. **Multiply B and B'**: Now, we can calculate \( BB' \): \[ BB' = B B = (A^{-1} A')(I) = A^{-1} A' I = A^{-1} A' = B \] 5. **Final Calculation**: Since \( B = A^{-1} A' \), we need to find \( BB' \): \[ BB' = A^{-1} A' A^{-1} A' = A^{-1} (A' A^{-1}) A' = A^{-1} I A' = A^{-1} A' = B \] 6. **Conclusion**: Since \( B B' = I \), we conclude that: \[ BB' = I \] ### Final Answer: Thus, \( BB' = I \).
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PROBABILITY

    MODERN PUBLICATION|Exercise MOCK TEST (Fill in the blanks)|7 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise MOCK TEST (Answer the following questions)|22 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise CHAPTER TEST (3)|12 Videos
  • RELATIONS AND FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (1)|12 Videos

Similar Questions

Explore conceptually related problems

If A is an 3xx3 non-singular matrix such that A A^' = A^' A and B""=""A^(-1)A^' , then BB^' equals (1) I""+""B (2) I (3) B^(-1) (4) (B^(-1))^'

If A is a 3 xx 3 non-singular matrix such that A A^(T) = A^(T)A " and "B = A^(-1)A^(T), " then "B B^(T) is equal to

Knowledge Check

  • If A is a 3xx3 non-singular matrix such that A A'=A'AandB=A^(-1)A' then BB' =

    A
    `I+B`
    B
    `I`
    C
    `B^(-1)`
    D
    `(B^(-1))'`
  • If A is an 3 xx 3 non- singular matrix, such that AA = A' A and B = A^(-1) A, then BB¢ equals to

    A
    `(B^(-1))`
    B
    l+B
    C
    I
    D
    `B^(-1)`
  • If A is an 3xx3 non-singular matrix such that A A^T=A^TA and B=A^(-1)A^T," then " B B^T equals

    A
    `B^(-1)`
    B
    `(B^(-1))^T`
    C
    `I+B`
    D
    `{:[(2015,0),(1,2015)]:}`
  • Similar Questions

    Explore conceptually related problems

    If A is an 3xx3 non-singular matrix such that A A^(prime)=A^(prime)A a n dB=A^(-1)A^(prime), then B B ' equals: (a) B^(-1) (b) (B^(-1))' (c) I+B (d) I

    If A is a non-singular matrix such that AA^(T)=A^(T)A and B=A^(-1)A^(T), the matrix B is a.involuntary b.orthogonal c.idempotent d. none of these

    If A is a 3xx3 non-singular matrix,then |A^(-1)adj(A)| is

    If A is 3xx3 non-singular matrix such that A^(-1)+(adj.A)=0," then det "(A)=

    If is a non-singular matrix, then det (A^(1))=